logo
Анализ напряженно-деформированного состояния технологического трубопровода

1. Контроль напряженно-деформированного состояния технологических трубопроводов НПС

Современная диагностика состояния конструкционных материалов, располагающая большим арсеналом различных физических методов и средств, уже не ограничивается задачами дефектоскопии, но все более широко используется при решении задач определения механических характеристик материалов, причем основное место здесь занимают методы и средства измерения остаточных и рабочих внутренних напряжений.

В связи с этим обстоятельством на первый план выходят методы технической диагностики, сочетающие механику разрушений, металловедения и неразрушающего контроля. К таким методам относятся, в первую очередь, методы контроля напряженно-деформированного состояния (НДС).

Проблемой измерений механических напряжений в работающих конструкциях с целью оценки их состояния в настоящее время занимаются все ведущие диагностические центры мира. Однако, до сих пор эффективность различных методов и средств контроля напряжений остается низкой при их использовании непосредственно на оборудовании.

Анализ возможностей известных методов контроля напряжений и деформаций в основном металле и в сварных соединениях оборудования и конструкций позволяет назвать следующие их существенные недостатки:

· непригодность для контроля протяженных трубопроводов и конструкций, крупногабаритных изделий, оборудования и сосудов;

· невозможность использования большинства методов в области пластической деформации;

· не учитывается изменение структуры металла;

· невозможность оценки глубинных слоев металла для большинства методов контроля;

· требуется построение градуировочных графиков на основе испытаний предварительно изготовленных образцов, которые, как правило, не отражают фактическое энергетическое состояние оборудования;

· требуется подготовка контролируемой поверхности и объектов контроля (зачистка, активное намагничивание, клейка датчиков и прочее);

· сложность определения положения датчиков контроля по отношению к направлению действия максимальных напряжений и деформаций, определяющих надежность оборудования.

Кроме того, традиционные методы и средства НК напряжений, которые основаны на активном взаимодействии сигнала прибора с металлом конструкции, получают косвенную информацию о напряженном состоянии объекта контроля, т.е. имеют недостаточную информативность физических полей, используемых при контроле. Действительно, вводимое в исследуемый материал поле, взаимодействуя с собственными полями материала, меняет его свойства и характеристики НДС объекта контроля. При этом характер, величина и время жизни изменений определяются динамическим соотношением энергий взаимодействующих полей. На практике, при проведении диагностики, такие изменения просто не учитывают.

Данное замечание относится, в первую очередь, к следующим методам:

· метод коэрцитивной силы (приборы-коэрцитиметры различных модификаций);

· метод магнитной анизотропии (приборы типа Комплекс 2.05 и 2.06);

· методы, использующие эффект Баркгаузена (приборы типа Стресскан, Интромат, Пион и другие).

Необходимо помнить, что любое искусственно вводимое от прибора физическое поле в объект контроля, находящийся в напряженно-деформированном состоянии (даже после снятия рабочих нагрузок), обязательно будет взаимодействовать с собственными физическими полями материала (например, электромагнитными), сформировавшимися на уровне кристаллической решетки. Не учитывать фактическое энергетическое состояние объекта контроля (о чем свидетельствует "магнитная память металла") - грубейшая ошибка для всех методов контроля НДС! Особенно это относится к ЗКН, которые сосредоточены, как правило, на глубине и в объеме, и на поверхность изделия выходят в виде линий скольжения (места образования трещин!) шириной в несколько микрон (и даже нескольких долей микрона!). Кроме того, выполнение контроля осуществляется, как правило, на остановленном в ремонт оборудовании, после снятия рабочих нагрузок в условиях остаточного НДС, когда напряжения и деформации имеют противоположный знак и другие значения по сравнению с рабочими. В данных объективных условиях указанные выше методы контроля оказываются не эффективными для оценки фактического НДС объекта контроля, как по своей физической сущности, так и по метрологическим условиям (датчики приборов, как правило, значительно превышают площади ЗКН), а, главное, не известно на какую глубину искусственно намагничивать металл, где и как ставить датчик, когда не известны зоны максимальных напряжений (рабочих или остаточных).

Таким образом, перечисленные выше недостатки известных методов контроля НДС обусловлены физической сущностью этих методов и являются закономерными. Отсутствие метрологической базы для сертификации и поверки средств измерений характеристик НДС материалов (до сих пор в России и других странах нет единых эталонов и образцов) приводят к неоднозначности требований и ошибочности методического подхода к разрабатываемым средствам контроля. Кроме того, в настоящее время ни в одной стране мира нет программ и центров обучения специалистов по неразрушающему контролю НДС оборудования и конструкций. Отсутствуют стандарты1, излагающие общие требования к методам и средствам НК напряжений и деформаций в конструкциях.

1) Впервые такой стандарт подготовлен в России специалистами ООО «Энергодиагностика» и представлен 14 июля 2004 года на заседании V комиссии Международного института сварки в г.Осака (Япония) для обсуждения и получения отзыва. Стандарт называется «Контроль неразрушающий. Контроль напряженно-деформированного состояния объектов промышленности и транспорта при оценке ресурса оборудования. Общие требования».

При оценке ресурса оборудования, как известно, непременным условием является определение фактического напряженно-деформированного состояния с выявлением зон концентрации напряжений (ЗКН)2) - основных источников развития повреждений - на основе 100% обследования всего объема металла. Именно ЗКН определяют работоспособность любой конструкции, а не расчетные, средние значения рабочих напряжений.

2) Следует отличать традиционное понятие «концентратор напряжений», обусловленный конструкцией изделия, от материаловедческого понятия «концентрация напряжений», возникающая в зонах устойчивых полос скольжения дислокаций, обусловленных действием рабочих нагрузок. ЗКН -локальная зона изделия, в которой возникла большая деформация по сравнению со средней деформацией по всему объему изделия, обусловленная неудачным сочетанием особенностей конструкции, неоднородности структуры материала и рабочими нагрузками.

Известно, что под действием эксплуатационных нагрузок работа металла оборудования в основном определяется скольжением дислокаций и сдвиговой деформацией. При этом накопление усталостной повреждаемости металла во многих случаях происходит в условиях мало и многоцикловой рабочей нагрузки. Очевидно, что традиционные методы контроля напряжений не могут оценить фактическое НДС конструкции, так как в общем случае неизвестны ЗКН, обусловленные сдвиговой деформацией. В ходе промышленных исследований установлено, что только "пассивные" методы диагностики НДС могут ответить на поставленные вопросы, и являются наиболее пригодными для практики.