10.3.5. Нагрузки, действующие на штанги, и их влияние на ход плунжера
Динамика работы установки ШСН очень сложна. Однако в большинстве случаев упрощенная теория ее работы дает вполне приемлемые результаты. При ходе вверх статические нагрузки в точке подвеса штанг складываются из веса штанг Ршт и веса столба жидкости Рж. В н. м. т. в результате изменения направления движения, когда возникает максимальное ускорение, к ним добавляется сила инерции Pi, направленная вниз; кроме того, действует сила трения Ртр, также направленная вниз. Таким образом, максимальная нагрузка, возникающая в точке подвеса штанг при начале хода вверх, будет равна
(10.30)
При ходе вниз нагнетательный клапан открывается и гидростатические давления над и под плунжером выравниваются. Поэтому нагрузка от столба жидкости со штанг снимается и передается на трубы, так как имеющийся в цилиндре всасывающий клапан при ходе вниз закрыт. Силы инерции, возникающие в в. м. т., направлены вверх. Силы трения также направлены вверх, т. е. в сторону, противоположную направлению движения. Поэтому нагрузка в начале хода вниз будет минимальной
(10.31)
Силы Pi+Ртр составляют малую долю от Рш+Рж. Обычно они не превышают 5 - 10%. Поэтому их влияние на ход плунжера невелико.
Влияние статических нагрузок
Сила Рж действует попеременно то на штанги (ход вверх), то на трубы (ход вниз). В результате этого при ходе вверх штанги дополнительно растягиваются на величину λш, которая может быть определена по закону Гука
(10.32)
Одновременно с этим, в результате снятия с труб силы Рж, последние укорачиваются на величину
(10.ЗЗ)
В результате, перемещение плунжера относительно цилиндра насоса, т. е. начало процесса всасывания жидкости, начнется только после того, как точка подвеса скомпенсирует своим перемещением вверх удлинение штанг λш и сжатие труб λт. Поэтому полезный ход плунжера составит
(10.34)
Обычно обозначают
(10.35)
Подставляя в (10.35) значения λш и λт согласно (10.32) и (10.33). получим
(10.36)
где Рж - вес столба жидкости, действующий на плунжер; L - длина штанг, или глубина подвески ШСН; Е - модуль Юнга; fm - площадь сечения штанг; fт - площадь сечения металла труб. Верхние штанги испытывают наибольшую нагрузку, так как на них действует вес всей колонны штанг. Нижние штанги нагрузку от собственного веса не испытывают. Поэтому, исходя из принципа равнопрочности колонны штанг, а также для уменьшения нагрузки на головку балансира колонну штанг делают ступенчатой, состоящей из участков штанг с уменьшающимся книзу диаметром. Кроме одноступенчатых колонн применяются двух- и трехступенчатые. Каждая ступень дополнительно удлиняется под действием одной и той же силы Рж.
Поэтому суммарное удлинение ступенчатой колонны штанг будет равно сумме удлинений отдельных ступеней с учетом их длины li и площади сечения fi. Тогда для трехступенчатой колонны получим
или с учетом деформации труб
Учитывая конструкцию сочленения штанг с плунжером с помощью клапанной клетки, при которой на нижний торец штанги действует гидростатическое давление, необходимо Ршт принимать с учетом выталкивающей силы Архимеда, равной произведению площади сечения штанги на гидростатическое давление столба жидкости над плунжером. При современных однотрубных системах сбора нефти и газа давление на устье Pу насосных скважин может достигать больших значений, поэтому при вычислении гидростатического давления, действующего на штанги, необходимо учитывать и это обстоятельство.
- Томский политехнический университет Эксплуатация нефтяных и газовых скважин Курс лекций
- Введение
- 1. Общая характеристика нефтяной залежи
- 1.1. Понятие о нефтяной залежи
- 1.2. Механизм использования пластовой энергии при добыче нефти
- 2. Источники пластовой энергии
- 2.1. Пластовые давления
- 2.1.1. Статическое давление на забое скважины
- 2.1.2. Статический уровень
- 2.1.3. Динамическое давление на забое скважины
- 2.1.4. Динамический уровень жидкости
- 2.1.5. Среднее пластовое давление
- 2.1.6. Пластовое давление в зоне нагнетания
- 2.2. Приток жидкости к скважине
- 2.3. Режимы разработки нефтяных месторождений
- 2.4. Водонапорный режим
- 2.5. Упругий режим
- 2.6. Режим газовой шапки
- 2.7. Режим растворенного газа
- 2.8. Гравитационный режим
- 3. Технология и техника воздействия на залежь нефти
- 3.1. Цели и методы воздействия
- 3.2. Технология поддержания пластового давления закачкой воды
- 3.2.1. Размещение скважин
- 3.3. Основные характеристики поддержания пластового давления закачкой воды
- 3.4. Водоснабжение систем ппд
- 3.5. Техника поддержания давления закачкой воды
- 3.5.1. Водозаборы
- 3.5.2. Насосные станции первого подъема
- 3.5.3. Буферные емкости
- 3.5.4.Станции второго подъема
- 3.6. Оборудование кустовых насосных станций
- Основные характеристики бкнс
- 3.7. Технология и техника использования глубинных вод для ппд
- 3.8. Поддержание пластового давления закачкой газа
- 3.9. Методы теплового воздействия на пласт
- 3.10. Техника закачки теплоносителя в пласт
- 3.11. Внутрипластовое горение
- 4. Подготовка скважин к эксплуатации
- 4.1. Конструкция оборудования забоев скважин
- 4.2. Приток жидкости к перфорированной скважине
- 4.3. Техника перфорации скважин
- 4.4. Пескоструйная перфорация
- 4.5. Методы освоения нефтяных скважин
- 4.6. Передвижные компрессорные установки
- 4.7. Освоение нагнетательных скважин
- 5. Методы воздействия на призабойную зону скважины
- 5.1. Назначение методов и их общая характеристика
- 5.2. Обработка скважин соляной кислотой
- 5.3. Термокислотные обработки
- 5.4. Поинтервальная или ступенчатая ско
- 5.5. Кислотные обработки терригенных коллекторов
- 5.6. Техника и технология кислотных обработок скважин
- 5.7. Гидравлический разрыв пласта
- 5.8. Осуществление гидравлического разрыва
- 5.9. Техника для гидроразрыва пласта
- 5.10. Тепловая обработка призабойной зоны скважины
- 5.11. Термогазохимическое воздействие на призабойную зону скважины
- 5.12. Другие методы воздействия на призабойную зону скважин
- 6. Исследование скважин
- 6.1. Назначение и методы исследования скважин
- 6.2. Исследование скважин при установившихся режимах
- 6.3. Исследование скважин при неустановившихся режимах
- 6.4. Термодинамические исследования скважин
- 6.5. Скважинные дебитометрические исследования
- 6.6. Техника и приборы для гидродинамических исследований скважин
- 7. Основы теории подъема жидкости в скважине
- 7.1. Физика процесса движения газожидкостной смеси в вертикальной трубе
- 7.1.1. Зависимость подачи жидкости от расхода газа
- 7.1.2. Зависимость положения кривых q (V) от погружения
- 7.1.3. Зависимость положения кривых q(V) от диаметра трубы
- 7.1.4. К. П. Д. Процесса движения гжс
- 7.1.5. Понятие об удельном расходе газа
- 7.1.6. Зависимость оптимальной и максимальной подач от относительного погружения
- 7.1.7. Структура потока гжс в вертикальной трубе
- 7.2. Уравнение баланса давлений
- 7.3. Плотность газожидкостной смеси
- 7.4. Формулы перехода
- 8. Эксплуатация фонтанных скважин
- 8.1. Артезианское фонтанирование
- 8. 2. Фонтанирование за счет энергии газа
- 8. 3. Условие фонтанирования
- 8. 4. Расчет фонтанного подъемника
- 8. 5. Расчет процесса фонтанирования с помощью кривых распределения давления
- 8. 6. Оборудование фонтанных скважин
- 8.6.1. Колонная головка
- 8.6.2. Фонтанная арматура
- 8.6.3. Штуцеры.
- 8.6.4. Манифольды
- 8. 7. Регулирование работы фонтанных скважин
- 8. 8. Осложнения в работе фонтанных скважин и их предупреждение
- 8.8.1. Открытое фонтанирование
- 8.8.2. Предупреждение отложений парафина
- 8.8.3. Борьба с песчаными пробками
- 8.8.4. Отложение солей
- 9. Газлифтная эксплуатация скважин
- 9.1. Общие принципы газлифтной эксплуатации
- 9.2. Конструкции газлифтных подъемников
- 9.3. Пуск газлифтной скважины в эксплуатацию (пусковое давление)
- 9.4. Методы снижения пусковых давлений
- 9.4.1. Применение специальных пусковых компрессоров
- 9.4.2. Последовательный допуск труб
- 9.4.3. Переключение работы подъемника с кольцевой системы на центральную
- 9.4.4. Задавка жидкости в пласт
- 9.4.5. Применение пусковых отверстий
- 9.5. Газлифтные клапаны
- 9.6. Принципы размещения клапанов
- 9.7. Принципы расчета режима работы газлифта
- 9.8. Оборудование газлифтных скважин
- 9.9. Системы газоснабжения и газораспределения
- 9.10. Периодический газлифт
- 9.11. Исследование газлифтных скважин
- 10. Эксплуатация скважин штанговыми насосами
- 10.1. Общая схема штанговой насосной установки, ее элементы и назначение
- 10.2. Подача штангового скважинного насоса и коэффициент подачи
- 10.3. Факторы, снижающие подачу шсн
- 10.3.1. Влияние газа
- 10.3.2. Влияние потери хода плунжера
- 10.3.3. Влияние утечек
- 10.3.4. Влияние усадки жидкости
- 10.3.5. Нагрузки, действующие на штанги, и их влияние на ход плунжера
- 10.4. Оборудование штанговых насосных скважин
- 10.4.1. Штанговые скважинные насосы
- 10.4.2. Штанги
- Характеристики штанг и муфт
- 10.4.3. Насосные трубы
- Характеристики насосно-компрессорных труб
- 10.4.4. Оборудование устья скважины
- 10.4.5. Канатная подвеска
- 10.4.6. Штанговращатель
- 10.4.7. Станки-качалки (ск)
- Техническая характеристика станков-качалок
- 10.5. Исследование скважин, оборудованных штанговыми насосными установками
- 10.5.1. Эхолот
- 10.5.2. Динамометрия шсну
- - Перо геликсной пружины, 7 - геликсная пружина, 8 - капиллярная трубка, соединяющая геликсную пружину с полостью силоизмерительной камеры - 9, 10 - нажимной диск,
- 10.5.3. Динамограмма и ее интерпретация
- 10.6. Эксплуатация скважин штанговыми насосами в осложненных условиях
- 11. Эксплуатация скважин погружными центробежными электронасосами
- 11.1. Общая схема установки погружного центробежного электронасоса
- 11.2. Погружной насосный агрегат
- 11.3. Элементы электрооборудования установки
- Характеристика кабелей, применяемых для упцэн
- 11.4. Установка пцэн специального назначения
- 11.5. Определение глубины подвески пцэн
- 11.6. Определение глубины подвески пцэн c помощью кривых распределения давления
- 12. Гидропоршневые насосы
- 12.1. Принцип действия гидропоршневого насоса
- 12.2. Подача гпн и рабочее давление
- 13. Погружные винтовые насосы
- 14. Раздельная эксплуатация пластов одной скважиной
- 14.1. Общие принципы
- 14.2. Некоторые схемы оборудования скважин для раздельной эксплуатации пластов
- 14.3. Раздельная закачка воды в два пласта через одну скважину
- 15. Ремонт скважин
- 15.1. Общие положения
- Гидравлический разрыв пласта.
- 15.2. Подъемные сооружения и механизмы для ремонта скважин
- - Опоры мачты; 2 - пульт управления; 3 - барабан лебедки;
- - Кулисный механизм для подъема мачты; 5 - опоры мачты в рабочем положении;
- - Плашка; 6 - опроный фланец; 7 - водило; 8 - вал вилки включения маховика;
- 15.3. Технология текущего ремонта скважин
- 15.4. Капитальный ремонт скважин
- 15.5. Новая технология ремонтных работ на скважинах
- 15.6. Ликвидация скважин
- 16. Эксплуатация газовых скважин
- 16.1. Особенности конструкций газовых скважин
- 16.2. Оборудование устья газовой скважины
- 16.3. Подземное оборудование ствола газовых скважин при добыче природного газа различного состава
- 16.4. Оборудование забоя газовых скважин
- 16.5. Расчет внутреннего диаметра и глубины спуска колонны нкт в скважину
- 16.5.1. Определение внутреннего диаметра колонны нкт
- 16.5.2. Определение глубины спуска колонны нкт в скважину
- 16.6. Способы и оборудование для удаления жидкости с забоя газовых и газоконденсатных скважин
- 16.7. Одновременная раздельная эксплуатация двух газовых пластов одной скважиной
- 17. Системы промыслового сбора и подготовки нефти и природного газа
- 17.1. Системы сбора скважинной продукции
- 17.2. Промысловая подготовка нефти
- 17.2.1. Дегазация
- 17.2.2. Обезвоживание
- 17.2.3. Обессоливание
- 17.2.4. Стабилизация
- 17.2.5. Установка комплексной подготовки нефти
- 17.3. Системы промыслового сбора природного газа
- 1, 9, 11, 12 - Насосы; 2,5 - теплообменники; 3 - отстойник; 4 - электродегидратор;
- VIII- установка подготовки газа; гсп- групповой сборный пункт; цсп-
- 17.4. Промысловая подготовка газа
- 17.4.1. Очистка газа от механических примесей
- 17.4.2. Осушка газа
- 17.4.3. Очистка газа от сероводорода
- 17.4.4. Очистка газа от углекислого газа
- Список рекомендуемой литературы