8. 2. Фонтанирование за счет энергии газа
Это наиболее распространенный способ фонтанирования нефтяных скважин. Уже было отмечено, что при артезианском фонтанировании в фонтанных трубах движется негазированная жидкость (нефть), поэтому, чтобы преодолеть гидростатическое давление столба такой жидкости, забойное давление должно быть достаточно высоким.
При фонтанировании за счет энергии газа плотность столба ГЖС в фонтанных трубах мала, поэтому гидростатическое давление столба такой смеси будет меньше. Следовательно, и для фонтанирования скважины потребуется меньшее забойное давление. При движении жидкости по НКТ от забоя к устью давление уменьшается, и на некоторой высоте оно становится равным давлению насыщения Рнас, а выше - ниже давления насыщения. В зоне, где Р < Рнас, из нефти выделяется газ, причем этого газа становится тем больше, чем меньше давление, т. е. чем больше разница давлений ΔР = Рнас - Р. Таким образом, нефть при фонтанировании разгазируется в результате выделения из нее растворенного газа, перехода его в свободное состояние и образования ГЖС с плотностью, существенно меньшей плотности чистой нефти. В описанном случае фонтанирование будет происходить при давлении на забое скважины, превышающем давление насыщения (Рс > Рнас), и газ будет выделяться на некоторой высоте в НКТ.
Возможен другой случай, когда фонтанирование происходит при давлении на забое скважины ниже давления насыщения (Рс < Рнас). При этом на забой скважины вместе с нефтью поступает свободный газ, к которому, по мере подъема нефти по НКТ, добавляются дополнительные порции свободного газа, выделяющегося из нефти при снижении давления. Масса свободного газа, приходящегося на единицу массы жидкости, по мере подъема увеличивается. Объем свободного газа также увеличивается за счет его расширения. В результате газонасыщенность потока возрастает, а его плотность соответственно снижается.
Таким образом, фонтанирование скважины может происходить при давлении на забое Рс выше или ниже давления насыщения Рнас.
Сделаем несколько предварительных общих определений. Очевидно, давление на забое фонтанной скважины в любом случае будет равно
, (8.18)
где Рб - давление у башмака НКТ при фонтанировании скважины с постоянным дебитом, Р = (Н - L)·ρ·g - гидростатическое давление столба жидкости между башмаком и забоем высотой Н - L, где Н - глубина скважины, L - длина НКТ; ρ - средняя плотность жидкости в этом интервале.
С другой стороны, то же давление на забое Рс может быть определено через уровень жидкости в межтрубном пространстве
, (8.19)
где Р1 = hρg - гидростатическое давление столба жидкости в межтрубном пространстве; Р2 = Рз + ΔР - давление газа, находящегося в межтрубном пространстве, на уровень жидкости, Рз - давление газа в межтрубном пространстве на устье скважины; ΔР - гидростатическое давление столба газа от уровня до устья.
Очевидно,
,
где ρг - средняя плотность газа в межтрубном пространстве. Запишем (8.19) в развернутом виде:
. (8.20)
В скважине, фонтанирующей с постоянным дебитом, давление на забое Рс должно быть постоянным. Поэтому изменение высоты столба h в затрубном пространстве должно сопровождаться изменением давления на устье Рз так, чтобы сумма слагаемых согласно (8.20) была бы постоянной. Поэтому необходимо, чтобы уменьшение h сопровождалось увеличением давления газа Рз и наоборот.
Рассмотрим теперь два случая фонтанирования.
1. Рс < Рнас (рис. 8.2,a).
Рис. 8.2. Схема скважин при фонтанировании
а - при давлении на забое меньше давления насыщения (Рс < Рнас);
б - при давлении на забое больше давления насыщения (Рс > Рнас)
Свободный газ имеется на самом забое. К башмаку фонтанных труб будет двигаться газожидкостная смесь. При работе такой скважины основная масса пузырьков газа будет увлекаться потоком жидкости и попадать в фонтанные трубы. Однако часть пузырьков, двигающихся непосредственно у стенки обсадной колонны, будет проскальзывать мимо башмака НКТ и попадать в межтрубное пространство. В межтрубном пространстве выше башмака движения жидкости не происходит. Поэтому пузырьки газа в нем будут всплывать, достигать уровня жидкости и пополнять газовую подушку в межтрубном пространстве. Таким образом, при фонтанировании, когда Рс < Рнас, создаются условия для непрерывного накопления газа в межтрубном пространстве. Интенсивность этого процесса зависит от многих факторов.
1. От скорости восходящего потока ГЖС, т. е. от дебита скважины. Чем больше дебит, тем меньше газа попадает в межтрубное пространство.
2. От величины зазора между обсадной колонной и фонтанными трубами.
3. От количества и величины газовых пузырьков, что в свою очередь зависит от разницы между давлением насыщения и давлением у башмака.
4. От вязкости жидкости.
Накопление газа в затрубном пространстве приводит к увеличению давления Рз и соответствующему понижению уровня жидкости h на такую величину, чтобы давление на забое Рс согласно уравнению (8.20) оставалось бы постоянным. Этот процесс будет продолжаться до тех пор, пока уровень жидкости в межтрубном пространстве не опустится до башмака фонтанных труб. После этого процесс стабилизируется. Непрерывно возрастающее давление на устье межтрубного пространства после достижения максимума стабилизируется. В этом случае возможно достаточно точно определить давление у башмака фонтанных труб Рб, а также и давление на забое Рс по давлению на устье в межтрубном пространстве Рз, не прибегая к трудоемкому процессу спуска манометра в скважину. Давление Рз замеряется на устье манометром. Тогда давление у башмака будет равно
, (8.21)
где
- плотность газа.
Здесь ρо - плотность газа при стандартных условиях Ро и То; Тср - средняя температура в затрубном пространстве; z - коэффициент сжимаемости газа для условий Рз и Тср. Второе слагаемое в формуле (8.21) может быть определено несколько точнее по барометрической формуле.
Давление на забое скважины Рс будет больше Рб на величину гидростатического давления столба жидкости между забоем и башмаком фонтанных труб Р и может быть определено по формуле (8.18).
При больших расстояниях между забоем и башмаком НКТ (превышающих 50 - 100 м) в вычисление Рс вносится погрешность за счет недостоверности величины средней плотности ГЖС между башмаком и забоем - Р. В таких случаях величину Р необходимо определять методами, изложенными в теории движения газожидкостных смесей.
Таким образом, в фонтанирующей скважине при условии Рс < Рнас уровень жидкости в межтрубном пространстве обязательно должен устанавливаться у башмака НКТ после выхода работы скважины на установившийся режим. Однако это справедливо, если нет утечки газа из обсадной колонны из-за ее недостаточной герметичности или неплотностей в арматуре и колонной головки. При наличии утечек уровень жидкости может стабилизироваться в межтрубном пространстве на некоторой высоте, обусловливая такое давление на устье, при котором утечки газа сравниваются с его поступлением от башмака фонтанных труб.
2. Рс > Рнас (рис. 8.2,6).
Свободный газ в этом случае не накапливается в затрубном пространстве, так как нет условий для его проскальзывания у башмака фонтанных труб. В самих трубах газ начнет выделяться на некоторой высоте от башмака, где давление станет равным давлению насыщения. Поскольку при работе скважины обновление жидкости в затрубном пространстве не происходит, то не возникают и условия для пополнения газа. Из объема нефти, находящейся в затрубном пространстве, частично выделится растворенный газ, после чего вся система придет в равновесие. Уровень жидкости в этом случае будет находиться на некоторой глубине h в соответствии с выражением (8.20).
Различным положениям уровня будет соответствовать различное давление Pз. В этом случае вследствие неопределенности величины h становится невозможным определение забойного давления Рс по величине Рз.
- Томский политехнический университет Эксплуатация нефтяных и газовых скважин Курс лекций
- Введение
- 1. Общая характеристика нефтяной залежи
- 1.1. Понятие о нефтяной залежи
- 1.2. Механизм использования пластовой энергии при добыче нефти
- 2. Источники пластовой энергии
- 2.1. Пластовые давления
- 2.1.1. Статическое давление на забое скважины
- 2.1.2. Статический уровень
- 2.1.3. Динамическое давление на забое скважины
- 2.1.4. Динамический уровень жидкости
- 2.1.5. Среднее пластовое давление
- 2.1.6. Пластовое давление в зоне нагнетания
- 2.2. Приток жидкости к скважине
- 2.3. Режимы разработки нефтяных месторождений
- 2.4. Водонапорный режим
- 2.5. Упругий режим
- 2.6. Режим газовой шапки
- 2.7. Режим растворенного газа
- 2.8. Гравитационный режим
- 3. Технология и техника воздействия на залежь нефти
- 3.1. Цели и методы воздействия
- 3.2. Технология поддержания пластового давления закачкой воды
- 3.2.1. Размещение скважин
- 3.3. Основные характеристики поддержания пластового давления закачкой воды
- 3.4. Водоснабжение систем ппд
- 3.5. Техника поддержания давления закачкой воды
- 3.5.1. Водозаборы
- 3.5.2. Насосные станции первого подъема
- 3.5.3. Буферные емкости
- 3.5.4.Станции второго подъема
- 3.6. Оборудование кустовых насосных станций
- Основные характеристики бкнс
- 3.7. Технология и техника использования глубинных вод для ппд
- 3.8. Поддержание пластового давления закачкой газа
- 3.9. Методы теплового воздействия на пласт
- 3.10. Техника закачки теплоносителя в пласт
- 3.11. Внутрипластовое горение
- 4. Подготовка скважин к эксплуатации
- 4.1. Конструкция оборудования забоев скважин
- 4.2. Приток жидкости к перфорированной скважине
- 4.3. Техника перфорации скважин
- 4.4. Пескоструйная перфорация
- 4.5. Методы освоения нефтяных скважин
- 4.6. Передвижные компрессорные установки
- 4.7. Освоение нагнетательных скважин
- 5. Методы воздействия на призабойную зону скважины
- 5.1. Назначение методов и их общая характеристика
- 5.2. Обработка скважин соляной кислотой
- 5.3. Термокислотные обработки
- 5.4. Поинтервальная или ступенчатая ско
- 5.5. Кислотные обработки терригенных коллекторов
- 5.6. Техника и технология кислотных обработок скважин
- 5.7. Гидравлический разрыв пласта
- 5.8. Осуществление гидравлического разрыва
- 5.9. Техника для гидроразрыва пласта
- 5.10. Тепловая обработка призабойной зоны скважины
- 5.11. Термогазохимическое воздействие на призабойную зону скважины
- 5.12. Другие методы воздействия на призабойную зону скважин
- 6. Исследование скважин
- 6.1. Назначение и методы исследования скважин
- 6.2. Исследование скважин при установившихся режимах
- 6.3. Исследование скважин при неустановившихся режимах
- 6.4. Термодинамические исследования скважин
- 6.5. Скважинные дебитометрические исследования
- 6.6. Техника и приборы для гидродинамических исследований скважин
- 7. Основы теории подъема жидкости в скважине
- 7.1. Физика процесса движения газожидкостной смеси в вертикальной трубе
- 7.1.1. Зависимость подачи жидкости от расхода газа
- 7.1.2. Зависимость положения кривых q (V) от погружения
- 7.1.3. Зависимость положения кривых q(V) от диаметра трубы
- 7.1.4. К. П. Д. Процесса движения гжс
- 7.1.5. Понятие об удельном расходе газа
- 7.1.6. Зависимость оптимальной и максимальной подач от относительного погружения
- 7.1.7. Структура потока гжс в вертикальной трубе
- 7.2. Уравнение баланса давлений
- 7.3. Плотность газожидкостной смеси
- 7.4. Формулы перехода
- 8. Эксплуатация фонтанных скважин
- 8.1. Артезианское фонтанирование
- 8. 2. Фонтанирование за счет энергии газа
- 8. 3. Условие фонтанирования
- 8. 4. Расчет фонтанного подъемника
- 8. 5. Расчет процесса фонтанирования с помощью кривых распределения давления
- 8. 6. Оборудование фонтанных скважин
- 8.6.1. Колонная головка
- 8.6.2. Фонтанная арматура
- 8.6.3. Штуцеры.
- 8.6.4. Манифольды
- 8. 7. Регулирование работы фонтанных скважин
- 8. 8. Осложнения в работе фонтанных скважин и их предупреждение
- 8.8.1. Открытое фонтанирование
- 8.8.2. Предупреждение отложений парафина
- 8.8.3. Борьба с песчаными пробками
- 8.8.4. Отложение солей
- 9. Газлифтная эксплуатация скважин
- 9.1. Общие принципы газлифтной эксплуатации
- 9.2. Конструкции газлифтных подъемников
- 9.3. Пуск газлифтной скважины в эксплуатацию (пусковое давление)
- 9.4. Методы снижения пусковых давлений
- 9.4.1. Применение специальных пусковых компрессоров
- 9.4.2. Последовательный допуск труб
- 9.4.3. Переключение работы подъемника с кольцевой системы на центральную
- 9.4.4. Задавка жидкости в пласт
- 9.4.5. Применение пусковых отверстий
- 9.5. Газлифтные клапаны
- 9.6. Принципы размещения клапанов
- 9.7. Принципы расчета режима работы газлифта
- 9.8. Оборудование газлифтных скважин
- 9.9. Системы газоснабжения и газораспределения
- 9.10. Периодический газлифт
- 9.11. Исследование газлифтных скважин
- 10. Эксплуатация скважин штанговыми насосами
- 10.1. Общая схема штанговой насосной установки, ее элементы и назначение
- 10.2. Подача штангового скважинного насоса и коэффициент подачи
- 10.3. Факторы, снижающие подачу шсн
- 10.3.1. Влияние газа
- 10.3.2. Влияние потери хода плунжера
- 10.3.3. Влияние утечек
- 10.3.4. Влияние усадки жидкости
- 10.3.5. Нагрузки, действующие на штанги, и их влияние на ход плунжера
- 10.4. Оборудование штанговых насосных скважин
- 10.4.1. Штанговые скважинные насосы
- 10.4.2. Штанги
- Характеристики штанг и муфт
- 10.4.3. Насосные трубы
- Характеристики насосно-компрессорных труб
- 10.4.4. Оборудование устья скважины
- 10.4.5. Канатная подвеска
- 10.4.6. Штанговращатель
- 10.4.7. Станки-качалки (ск)
- Техническая характеристика станков-качалок
- 10.5. Исследование скважин, оборудованных штанговыми насосными установками
- 10.5.1. Эхолот
- 10.5.2. Динамометрия шсну
- - Перо геликсной пружины, 7 - геликсная пружина, 8 - капиллярная трубка, соединяющая геликсную пружину с полостью силоизмерительной камеры - 9, 10 - нажимной диск,
- 10.5.3. Динамограмма и ее интерпретация
- 10.6. Эксплуатация скважин штанговыми насосами в осложненных условиях
- 11. Эксплуатация скважин погружными центробежными электронасосами
- 11.1. Общая схема установки погружного центробежного электронасоса
- 11.2. Погружной насосный агрегат
- 11.3. Элементы электрооборудования установки
- Характеристика кабелей, применяемых для упцэн
- 11.4. Установка пцэн специального назначения
- 11.5. Определение глубины подвески пцэн
- 11.6. Определение глубины подвески пцэн c помощью кривых распределения давления
- 12. Гидропоршневые насосы
- 12.1. Принцип действия гидропоршневого насоса
- 12.2. Подача гпн и рабочее давление
- 13. Погружные винтовые насосы
- 14. Раздельная эксплуатация пластов одной скважиной
- 14.1. Общие принципы
- 14.2. Некоторые схемы оборудования скважин для раздельной эксплуатации пластов
- 14.3. Раздельная закачка воды в два пласта через одну скважину
- 15. Ремонт скважин
- 15.1. Общие положения
- Гидравлический разрыв пласта.
- 15.2. Подъемные сооружения и механизмы для ремонта скважин
- - Опоры мачты; 2 - пульт управления; 3 - барабан лебедки;
- - Кулисный механизм для подъема мачты; 5 - опоры мачты в рабочем положении;
- - Плашка; 6 - опроный фланец; 7 - водило; 8 - вал вилки включения маховика;
- 15.3. Технология текущего ремонта скважин
- 15.4. Капитальный ремонт скважин
- 15.5. Новая технология ремонтных работ на скважинах
- 15.6. Ликвидация скважин
- 16. Эксплуатация газовых скважин
- 16.1. Особенности конструкций газовых скважин
- 16.2. Оборудование устья газовой скважины
- 16.3. Подземное оборудование ствола газовых скважин при добыче природного газа различного состава
- 16.4. Оборудование забоя газовых скважин
- 16.5. Расчет внутреннего диаметра и глубины спуска колонны нкт в скважину
- 16.5.1. Определение внутреннего диаметра колонны нкт
- 16.5.2. Определение глубины спуска колонны нкт в скважину
- 16.6. Способы и оборудование для удаления жидкости с забоя газовых и газоконденсатных скважин
- 16.7. Одновременная раздельная эксплуатация двух газовых пластов одной скважиной
- 17. Системы промыслового сбора и подготовки нефти и природного газа
- 17.1. Системы сбора скважинной продукции
- 17.2. Промысловая подготовка нефти
- 17.2.1. Дегазация
- 17.2.2. Обезвоживание
- 17.2.3. Обессоливание
- 17.2.4. Стабилизация
- 17.2.5. Установка комплексной подготовки нефти
- 17.3. Системы промыслового сбора природного газа
- 1, 9, 11, 12 - Насосы; 2,5 - теплообменники; 3 - отстойник; 4 - электродегидратор;
- VIII- установка подготовки газа; гсп- групповой сборный пункт; цсп-
- 17.4. Промысловая подготовка газа
- 17.4.1. Очистка газа от механических примесей
- 17.4.2. Осушка газа
- 17.4.3. Очистка газа от сероводорода
- 17.4.4. Очистка газа от углекислого газа
- Список рекомендуемой литературы