logo search
otvety_mineralka (1)

36. Кристаллические структуры и физические свойства минералов.

Самородные элементы, встречающиеся в твердом состоянии, обладают различными кристаллическими структурами. По типу сил связей между атомами преобладающее значение имеют атомные структуры плотнейшей упаковки с металлической связью, иногда с признаками связей, переходных к гетерополярной и вандерваальсовской. Этими особенностями обусловлен ряд важных общих свойств самородных металлов. Из всех природных веществ самородные металлы обладают наилучшей электропроводностью и теплопроводностью. Все они в полированном виде обладают сильным металлическим блеском, т. е. высокой отражательной способностью. Показатели преломления, от которых зависит блеск, являются наивысшими. Лишь для золота, серебра и меди они меньше 1, но это также обусловливает высокую отражательную способность (см. рис. 26). Точно так же и показатели поглощения света исключительно высоки. Большинство этих характеристик находится в прямой связи с электронной структурой металлов. Энергетические уровни электронных состояний в металлах лишены дискретности и образуют широкие сплошные полосы — энергетические зоны. Зоны валентных электронов и электронов проводимости в соединениях с преобладающей металлической связью перекрываются, что позволяет валентным электронам быть подвижными носителями заряда и обеспечивать высокую электропроводность. Далее большая ширина зон позволяет электронам совершать переходы в широком диапазоне энергий. Возможность таких переходов обеспечивает поглощение квантов электромагнитного излучения различных длин волн — практически всего видимого спектра, что и приводит к полной непрозрачности металлов. Цвет преобладающего большинства самородных металлов серебряно или оловянно_белый. Бросающимся в глаза исключением являются цвета золота и меди. Эти элементы могут обнаруживать более высокие валентности, чем следует по их положению в таблице элементов (Сu2+Сl1_2, Аu3+Сl1_3). Допускают, что избирательное отражение света связано с особенностями зонной структуры этих металлов. Из всех известных минералов самородные металлы обладают наибольшим удельным весом (особенно минералы элементов платиновой группы). Металлы, структура которых характеризуется координационным числом 12 и отсутствием направленных сил связей, обладают высокой ковкостью, отсутствием ясно выраженной спайности в изломе и обычно невысокой твердостью. В отношении твердости исключение составляют лишь иридий и минералы, содержащие этот элемент в значительных количествах. Ковкость и пластичность металлов обусловлены главным образом числом направлений, нормально к которым расположены плотнейшие упакованные слои. В средах, обладающих кубической плотнейшей упаковкой, таких направлений мы имеем четыре, тогда как в гексагональной структуре — одно. Поэтому металлы со структурами кубической упаковки обладают большей пластичностью по сравнению с металлами с гексагональной структурой. Благородные металлы, характеризующиеся лантаноидным сжатием атомных объемов, более устойчивы в химическом отношении. Вследствие этого золото и минералы платиновой группы широко распространены в россыпях речных долин. Физические свойства группы полуметаллов (мышьяка, сурьмы и висмута), характеризующихся существенной долей участия ковалентных связей и как бы частично искаженными до ромбоэдрической симметрии примитивно упакованными кубическими структурами, несколько отличаются от свойств типичных металлов. Проводимость этих веществ с ростом температуры повышается, в отличие от металлов. Наименьшие искажения в кристаллической структуре от кубического прототипа (искусственного _Po) наблюдаются у висмута, который обладает наибольшим в данной группе блеском, наименьшей хрупкостью, наименьшей твердостью и др. Общими для всех трех металлов являются морфологические особенности кристаллов и направления спайности, что строго согласуется с особенностями их кристаллического строения. Твердые при нормальных условиях неметаллы по кристаллическим структурам и связанным с ними свойствам совершенно не похожи на типичные металлы. На характеристике их подробно остановимся при описании минералов.