4.2. Приток жидкости к перфорированной скважине
При фильтрации жидкости, подчиняющейся линейному закону, приток жидкости к скважине можно выразить следующим образом:
, (4.1)
где Rф - фильтрационное сопротивление.
Приток жидкости к перфорированной скважине
(4.2)
будет отличаться тем, что вследствие сгущения линий тока у перфорационных отверстий возникнет дополнительное фильтрационное сопротивление Rдоп:
, (4.3)
где С - некоторая геометрическая характеристика.
Подставляя (4.3) в (4.2), получим
. (4.4)
Можно представить два крайних случая геометрической характеристики забоя.
1. Нет ни одного отверстия в обсадной колонне. Тогда, очевидно qп = 0, С = ∞.
2. Вся поверхность обсадной колонны в пределах толщины пласта покрыта перфорационными отверстиями. В этом случае сгущения линий тока не происходит и геометрия потока не будет отличаться от геометрии потока к забою скважины с открытым забоем. Очевидно, в этом случае С = 0.
Таким образом, величина С должна изменяться от 0 до ∞. С увеличением числа перфорационных отверстий n, их диаметра d, а также глубины L перфорационных каналов в породе пласта дополнительное фильтрационное сопротивление Rдоп должно уменьшаться, а следовательно, должно уменьшаться С. Таким образом,
. (4.5)
Задача о притоке жидкости к перфорированной скважине была решена методом электрогидродинамических аналогий (ЭГДА), основанном на тождественности уравнений фильтрации и распространения электрического тока в геометрически подобных системах. Отношение дебита перфорированной скважины к дебиту скважины с открытым забоем, принятой за эталон, при прочих равных условиях принято называть коэффициентом гидродинамического совершенства
. (4.6)
Подставляя вместо qп его значение из (4.4) и вместо q - из (4.1) и сокращая, найдем
. (4.7)
В методе ЭГДА в геометрически подобных системах токи являются аналогом расходов фильтрующейся жидкости, напряжения перепадов давлений и омические сопротивления - фильтрационных сопротивлений.
Используя гладкий цилиндрический электрод в качестве электрической модели скважины с открытым забоем и цилиндр из изоляционного материала с вмонтированными электродами в качестве модели перфорированной скважины, сравнивают протекающие через них токи при последовательном помещении этих моделей в токопроводящую среду (электролит) геометрически подобную пластовой системе и определяют коэффициент совершенства системы η и, используя (4.7), находят С (рис. 4.2).
Рис. 4.2. Зависимость C = f(nD, а, l) при l = 0:
n - плотность перфорации; D - диаметр скважин, d' - диаметр отверстий; l' - глубина
перфорационных отверстий; l = l' / D, α = d' / D. 1 - а = 0,02; 2 - oc = 0,04; 3 - a = 0,06;
4 - a = 0,08; 5 - a = 0,l; 6 - a = 0,12; 7 - a = 0,14; 8 - a = 0,16; 9 - oc = 0,18; 10 - a = 0,2
Меняя число электродов n, их диаметр d и длину L, можно установить зависимость C = f{n, d, L).
Несовершенные скважины бывают трех видов: скважина с открытым забоем, частично вскрывающая пласт на величину b (рис. 4.3, а) - несовершенная скважина по степени вскрытия - δ = b/h; скважина с перфорированным забоем и вскрывающая пласт на полную толщину (рис. 4.3, б) - несовершенная скважина по характеру вскрытия; скважина, перфорированная не на всю толщину пласта и вскрывающая его частично (рис. 4.3, в) - несовершенная по степени и характеру вскрытня (двойной вид несовершенства).
Рис. 4.3. Виды несовершенных скважин:
а - скважина, несовершенная по степени вскрытия; б - скважина, несовершенная по характеру
вскрытия, в - скважина с двойным видом несовершенства по степени и характеру вскрытия
Используя метод ЭГДА для определения притока в скважины, несовершенные по степени вскрытия, получим зависимости C = f(a, δ) для различных безразмерных толщин пласта а = h/D, где h - полная толщина пласта, D - диаметр скважины (рис. 4.4).
Рис. 4.4. Зависимость C = f{a, 6) для скважин, несовершенных по степени вскрытия
Для скважины с двойным несовершенством величина С может быть найдена следующим образом. Представим приток в скважину с двойным несовершенством состоящим из двух последовательных притоков (рис. 4.5): - притока в фиктивную несовершенную по степени вскрытия скважину увеличенного радиуса R и притока в несовершенную по характеру вскрытия скважину с действительным радиусом rс и плотностью перфорации n.
Рис. 4.5. Схема фильтрации жидкости к скважине с двойным видом несовершенства
При этом движении поток жидкости на своем пути от контура питания Рк до стенки скважины rс будет последовательно преодолевать несколько фильтрационных сопротивлений: R1 - фильтрационное сопротивление от Рк до стенки фиктивной скважины R,
R2 - дополнительное фильтрационное сопротивление, вызванное несовершенством скважины по степени вскрытия и равное - (μ/2πkh) *С1, где С1 - коэффициент, учитывающий несовершенство по степени вскрытия фиктивной скважины радиусом R, R3 - фильтрационное сопротивление от R до стенки скважины rс при толщине пласта b = δ٠h, где δ - степень вскрытия; R4 - дополнительное фильтрационное сопротивление, вызванное несовершенством по характеру вскрытия при толщине пласта также b = δ٠h и учитываемое коэффициентом C2. Приток в такую сложную систему определится следующим образом:
, (4.8)
Из формул (4. 1) и (4.3) следует
; (4.9)
; (4.10)
; (4.11)
. (4.12)
Тот же приток можно определить через сумму двух фильтрационных сопротивлений. Одно из них есть фильтрационное сопротивление, возникающее при течении от Rк до rс для плоско-радиального течения и равное
. (4.13)
Второе - дополнительное фильтрационное сопротивление R*2, обусловлено двойным видом несовершенства скважины и характеризуется коэффициентом С:
, (4.14)
так что
. (4.15)
Из условия равенства расходов, т. е. приравнивая (4.8) и (4.15), найдем
. (4.16)
После подстановки в (4.16) значений согласно (4.9) - (4.14) и сокращений получим
. (4.17)
Решая (4.17) относительно искомого С и после преобразований логарифмов найдем
. (4.18)
Величина R принимается равной 5rс из условия выравнивания струек тока и перехода их в достаточно правильный плоско-радиальный поток. При этом условии
. (4.19)
Здесь C1 определяется по графику C1 = f(δ, а) для скважин, несовершенных по степени вскрытия. Причем безразмерная толщина вычисляется по соотношению а = h/2R; δ = b /h - относительное вскрытие пласта фиктивной скважины; C2 определяется по одному из графиков C2 = f(nD, а, L) или интерполяцией значений, определяемых из графиков.
Определение С для скважины с двойным видом несовершенства по формуле (4.19) более правильно учитывает дополнительнoe фильтрационное сопротивление такой скважины и дает большую величину для С, нежели простое сложение C1 и C2, как это необоснованно делается в ряде литературных источников.
Для расчетов притока жидкости к системе взаимодействующих гидродинамически несовершенных, т. е. перфорированных, скважин важное значение имеет понятие приведенного радиуса rпр. Приведенным радиусом называется радиус такой фиктивной совершенной скважины, дебит которой, при прочих равных условиях, равен дебиту реальной гидродинамически несовершенной скважины.
Из определения следует
. (4.20)
Поскольку дебиты приравниваются при прочих равных условиях, то из (4.20) следует, что
.
Умножая С на 1 = lnе и делая некоторые преобразования, получим
откуда
(4.21)
Таким образом, зная rпр для перфорированной скважины из (4.21) и подставляя его значение вместо действительного радиуса скважины rс в любые формулы радиального притока или притока группы взаимодействующих скважин, получим приток для перфорированной скважины или их системы. Подставляя вместо rс значение rпр, мы как бы заменяем одну скважину или систему реальных перфорированных скважин их гидродинамическими эквивалентами - совершенными скважинами с фиктивными приведенными радиусами rпр. Таким образом, введение понятия приведенного радиуса позволяет распространить сложные расчетно-аналитические формулы по определению дебитов системы взаимодействующих идеальных совершенных скважин с плоской фильтрацией на такую же систему реальных перфорированных скважин с пространственной фильтрацией вблизи забоев.
- Томский политехнический университет Эксплуатация нефтяных и газовых скважин Курс лекций
- Введение
- 1. Общая характеристика нефтяной залежи
- 1.1. Понятие о нефтяной залежи
- 1.2. Механизм использования пластовой энергии при добыче нефти
- 2. Источники пластовой энергии
- 2.1. Пластовые давления
- 2.1.1. Статическое давление на забое скважины
- 2.1.2. Статический уровень
- 2.1.3. Динамическое давление на забое скважины
- 2.1.4. Динамический уровень жидкости
- 2.1.5. Среднее пластовое давление
- 2.1.6. Пластовое давление в зоне нагнетания
- 2.2. Приток жидкости к скважине
- 2.3. Режимы разработки нефтяных месторождений
- 2.4. Водонапорный режим
- 2.5. Упругий режим
- 2.6. Режим газовой шапки
- 2.7. Режим растворенного газа
- 2.8. Гравитационный режим
- 3. Технология и техника воздействия на залежь нефти
- 3.1. Цели и методы воздействия
- 3.2. Технология поддержания пластового давления закачкой воды
- 3.2.1. Размещение скважин
- 3.3. Основные характеристики поддержания пластового давления закачкой воды
- 3.4. Водоснабжение систем ппд
- 3.5. Техника поддержания давления закачкой воды
- 3.5.1. Водозаборы
- 3.5.2. Насосные станции первого подъема
- 3.5.3. Буферные емкости
- 3.5.4.Станции второго подъема
- 3.6. Оборудование кустовых насосных станций
- Основные характеристики бкнс
- 3.7. Технология и техника использования глубинных вод для ппд
- 3.8. Поддержание пластового давления закачкой газа
- 3.9. Методы теплового воздействия на пласт
- 3.10. Техника закачки теплоносителя в пласт
- 3.11. Внутрипластовое горение
- 4. Подготовка скважин к эксплуатации
- 4.1. Конструкция оборудования забоев скважин
- 4.2. Приток жидкости к перфорированной скважине
- 4.3. Техника перфорации скважин
- 4.4. Пескоструйная перфорация
- 4.5. Методы освоения нефтяных скважин
- 4.6. Передвижные компрессорные установки
- 4.7. Освоение нагнетательных скважин
- 5. Методы воздействия на призабойную зону скважины
- 5.1. Назначение методов и их общая характеристика
- 5.2. Обработка скважин соляной кислотой
- 5.3. Термокислотные обработки
- 5.4. Поинтервальная или ступенчатая ско
- 5.5. Кислотные обработки терригенных коллекторов
- 5.6. Техника и технология кислотных обработок скважин
- 5.7. Гидравлический разрыв пласта
- 5.8. Осуществление гидравлического разрыва
- 5.9. Техника для гидроразрыва пласта
- 5.10. Тепловая обработка призабойной зоны скважины
- 5.11. Термогазохимическое воздействие на призабойную зону скважины
- 5.12. Другие методы воздействия на призабойную зону скважин
- 6. Исследование скважин
- 6.1. Назначение и методы исследования скважин
- 6.2. Исследование скважин при установившихся режимах
- 6.3. Исследование скважин при неустановившихся режимах
- 6.4. Термодинамические исследования скважин
- 6.5. Скважинные дебитометрические исследования
- 6.6. Техника и приборы для гидродинамических исследований скважин
- 7. Основы теории подъема жидкости в скважине
- 7.1. Физика процесса движения газожидкостной смеси в вертикальной трубе
- 7.1.1. Зависимость подачи жидкости от расхода газа
- 7.1.2. Зависимость положения кривых q (V) от погружения
- 7.1.3. Зависимость положения кривых q(V) от диаметра трубы
- 7.1.4. К. П. Д. Процесса движения гжс
- 7.1.5. Понятие об удельном расходе газа
- 7.1.6. Зависимость оптимальной и максимальной подач от относительного погружения
- 7.1.7. Структура потока гжс в вертикальной трубе
- 7.2. Уравнение баланса давлений
- 7.3. Плотность газожидкостной смеси
- 7.4. Формулы перехода
- 8. Эксплуатация фонтанных скважин
- 8.1. Артезианское фонтанирование
- 8. 2. Фонтанирование за счет энергии газа
- 8. 3. Условие фонтанирования
- 8. 4. Расчет фонтанного подъемника
- 8. 5. Расчет процесса фонтанирования с помощью кривых распределения давления
- 8. 6. Оборудование фонтанных скважин
- 8.6.1. Колонная головка
- 8.6.2. Фонтанная арматура
- 8.6.3. Штуцеры.
- 8.6.4. Манифольды
- 8. 7. Регулирование работы фонтанных скважин
- 8. 8. Осложнения в работе фонтанных скважин и их предупреждение
- 8.8.1. Открытое фонтанирование
- 8.8.2. Предупреждение отложений парафина
- 8.8.3. Борьба с песчаными пробками
- 8.8.4. Отложение солей
- 9. Газлифтная эксплуатация скважин
- 9.1. Общие принципы газлифтной эксплуатации
- 9.2. Конструкции газлифтных подъемников
- 9.3. Пуск газлифтной скважины в эксплуатацию (пусковое давление)
- 9.4. Методы снижения пусковых давлений
- 9.4.1. Применение специальных пусковых компрессоров
- 9.4.2. Последовательный допуск труб
- 9.4.3. Переключение работы подъемника с кольцевой системы на центральную
- 9.4.4. Задавка жидкости в пласт
- 9.4.5. Применение пусковых отверстий
- 9.5. Газлифтные клапаны
- 9.6. Принципы размещения клапанов
- 9.7. Принципы расчета режима работы газлифта
- 9.8. Оборудование газлифтных скважин
- 9.9. Системы газоснабжения и газораспределения
- 9.10. Периодический газлифт
- 9.11. Исследование газлифтных скважин
- 10. Эксплуатация скважин штанговыми насосами
- 10.1. Общая схема штанговой насосной установки, ее элементы и назначение
- 10.2. Подача штангового скважинного насоса и коэффициент подачи
- 10.3. Факторы, снижающие подачу шсн
- 10.3.1. Влияние газа
- 10.3.2. Влияние потери хода плунжера
- 10.3.3. Влияние утечек
- 10.3.4. Влияние усадки жидкости
- 10.3.5. Нагрузки, действующие на штанги, и их влияние на ход плунжера
- 10.4. Оборудование штанговых насосных скважин
- 10.4.1. Штанговые скважинные насосы
- 10.4.2. Штанги
- Характеристики штанг и муфт
- 10.4.3. Насосные трубы
- Характеристики насосно-компрессорных труб
- 10.4.4. Оборудование устья скважины
- 10.4.5. Канатная подвеска
- 10.4.6. Штанговращатель
- 10.4.7. Станки-качалки (ск)
- Техническая характеристика станков-качалок
- 10.5. Исследование скважин, оборудованных штанговыми насосными установками
- 10.5.1. Эхолот
- 10.5.2. Динамометрия шсну
- - Перо геликсной пружины, 7 - геликсная пружина, 8 - капиллярная трубка, соединяющая геликсную пружину с полостью силоизмерительной камеры - 9, 10 - нажимной диск,
- 10.5.3. Динамограмма и ее интерпретация
- 10.6. Эксплуатация скважин штанговыми насосами в осложненных условиях
- 11. Эксплуатация скважин погружными центробежными электронасосами
- 11.1. Общая схема установки погружного центробежного электронасоса
- 11.2. Погружной насосный агрегат
- 11.3. Элементы электрооборудования установки
- Характеристика кабелей, применяемых для упцэн
- 11.4. Установка пцэн специального назначения
- 11.5. Определение глубины подвески пцэн
- 11.6. Определение глубины подвески пцэн c помощью кривых распределения давления
- 12. Гидропоршневые насосы
- 12.1. Принцип действия гидропоршневого насоса
- 12.2. Подача гпн и рабочее давление
- 13. Погружные винтовые насосы
- 14. Раздельная эксплуатация пластов одной скважиной
- 14.1. Общие принципы
- 14.2. Некоторые схемы оборудования скважин для раздельной эксплуатации пластов
- 14.3. Раздельная закачка воды в два пласта через одну скважину
- 15. Ремонт скважин
- 15.1. Общие положения
- Гидравлический разрыв пласта.
- 15.2. Подъемные сооружения и механизмы для ремонта скважин
- - Опоры мачты; 2 - пульт управления; 3 - барабан лебедки;
- - Кулисный механизм для подъема мачты; 5 - опоры мачты в рабочем положении;
- - Плашка; 6 - опроный фланец; 7 - водило; 8 - вал вилки включения маховика;
- 15.3. Технология текущего ремонта скважин
- 15.4. Капитальный ремонт скважин
- 15.5. Новая технология ремонтных работ на скважинах
- 15.6. Ликвидация скважин
- 16. Эксплуатация газовых скважин
- 16.1. Особенности конструкций газовых скважин
- 16.2. Оборудование устья газовой скважины
- 16.3. Подземное оборудование ствола газовых скважин при добыче природного газа различного состава
- 16.4. Оборудование забоя газовых скважин
- 16.5. Расчет внутреннего диаметра и глубины спуска колонны нкт в скважину
- 16.5.1. Определение внутреннего диаметра колонны нкт
- 16.5.2. Определение глубины спуска колонны нкт в скважину
- 16.6. Способы и оборудование для удаления жидкости с забоя газовых и газоконденсатных скважин
- 16.7. Одновременная раздельная эксплуатация двух газовых пластов одной скважиной
- 17. Системы промыслового сбора и подготовки нефти и природного газа
- 17.1. Системы сбора скважинной продукции
- 17.2. Промысловая подготовка нефти
- 17.2.1. Дегазация
- 17.2.2. Обезвоживание
- 17.2.3. Обессоливание
- 17.2.4. Стабилизация
- 17.2.5. Установка комплексной подготовки нефти
- 17.3. Системы промыслового сбора природного газа
- 1, 9, 11, 12 - Насосы; 2,5 - теплообменники; 3 - отстойник; 4 - электродегидратор;
- VIII- установка подготовки газа; гсп- групповой сборный пункт; цсп-
- 17.4. Промысловая подготовка газа
- 17.4.1. Очистка газа от механических примесей
- 17.4.2. Осушка газа
- 17.4.3. Очистка газа от сероводорода
- 17.4.4. Очистка газа от углекислого газа
- Список рекомендуемой литературы