Магматические источники
Магматические расплавы зарождаются в океанических и континентальных рифтах, зонах субдукции, зонах активизации платформ, активных континентальных окраинах, островных дугах. Толчком к появлению расплавов служит появление тепловых потоков мантийного и нижнекорового происхождения. Основная часть металлов в расплавы попадает из самих расплавляемых пород, меньшая – из мантийных флюидов.
В океанической коре формируются расплавы в основном ультраосновного и основного состава. В них способны накапливаться Сr, Pt, Fe, фосфор. В расплавах того же состава в континентальной коре, кроме того, также характерны Ni, Co, Cu, Au, Ti, V. Агентом растворения и переноса металлов является перегретая до состояния пара вода, насыщенная агрессивными ионами Сl-1, F-1, S-2, CO3-2 OH-1, H+1 и др., превращающими воду в электролит.
По мере подъема расплавов основного и ультраосновного состава фвверх происходит их постепенное взаимодействие с более кислыми породами и раскисление до среднего и кислого состава (андезиты, диориты, граниты и др.). С этими породами связан широкий круг металлов – Сu, Zn, Pb, Fe, Au, Ag, U, Bi, Sb, Sn, Mo, W, Be и др.
При остывании расплавов от них отделяются перегретые воды и летучие компоненты, насыщенные металлами. Этот газово-водный фронт движется вверх в область более низких температур и давлений, где возникают гидротермальные растворы, благодаря которым сформировано огромное количество рудных месторождений.
- 1.2. Площади распространения полезных ископаемых
- 1.3. Формы и условия залегания месторождений полезных ископаемых
- 1. Сингенетические и эпигенетические месторождения
- 2. Формы тел полезных ископаемых
- 3. Первичные рудные столбы и явления внутрирудной тектоники
- 4. Элементы залегания тел полезных ископаемых
- Лекция № 2 морфологические виды текстур и структур
- 2.1. Текстуры руд
- 2.2. Структуры руд
- Форма и внутреннее строение минеральных зерен
- 3.1. Минеральный и химический состав залежей полезных ископаемых
- 3.2. Парагенетические ассоциации химических элементов и минералов
- 3.3. Источники металлов и других полезных компонентов Источники энергии для мобилизации и переноса полезных компонентов
- Мантийные источники
- Магматические источники
- Осадочные источники гидротермально-метаморфогенных месторождений
- Источники металлов экзогенных месторождений
- Биогенные источники
- Техногенный источник
- 4.1. Серии месторождений полезных ископаемых
- 4.2. Уровни глубины формирования месторождений
- 4.3. Способы отложения минерального вещества мпи
- 5.1. Магматические месторождения
- 5.2. Пегматитовые месторождения
- Гранитные пегматиты чистой линии и линии скрещивания
- 5.3. Карбонатитовые месторождения
- 5.4. Скарновые месторождения
- 5.5. Гидротермальные месторождения
- Высокотемпературные гидротермальные месторождения
- Среднетемпературные гидротермальные месторождения
- Низкотемпературные месторождения
- Протяженность отдельных жил достигает 4 км по простиранию, 600-700 м по падению, мощность до 20-25 м (Купол на Чукотке), систем сближенных жил – первых десятков километров (Вета-Мадре в Мексике).
- 5.6. Альбититовые и грейзеновые месторождения
- 5.7. Колчеданные месторождения
- 6.1. Месторождения выветривания
- 6.2. Россыпные месторождения
- 6.3. Осадочные месторождения
- 6.3.1. Физико-химические условия образования
- 6.3.2.Механические осадочные месторождения
- 6.3.3.Химические осадочные месторождения
- 6.3.4.Биохимические осадочные месторождения
- 6.4.5.Вулканогенно-осадочные месторождения
- 8.1. Геологические условия образования и структуры месторождений
- 1. Связь месторождений с изверженными породами
- 2. Связь месторождений с определенными по литологическому составу породами стратиграфического разреза
- 3. Связь месторождений с крупными тектоническими элементами
- 8.2. Понятие о структурах рудных полей и месторождений