10.5.3. Динамограмма и ее интерпретация
Теоретическая динамограмма показана на рис. 10.13. На нее наложена (показана пунктиром) типичная фактическая динамо-грамма исправного насоса, спущенного на небольшую глубину и работающего в условиях отсутствия газа.
Линия аб означает деформацию штанг и труб и отражает процесс воспринятия штангами нагрузки от веса жидкости. Это происходит при перемещении штока на величину λ, начиная от н. м. т.
Линия бв - полезный ход плунжера, во время которого статическая нагрузка на шток равна весу штанг и жидкости.
Точка в соответствует верхней мертвой точке (в. м. т.). Линия вга - ходу вниз, при котором также штанги и трубы деформируются, но в обратном порядке, так как нагнетательный клапан открывается, штанги теряют при этом нагрузку и сокращаются, а трубы (всасывающий клапан закрывается) приобретают ее и удлиняются.
Реальная динамограмма всегда отличается от теоретической. Превышение пунктира над линией бв означает появление дополнительных нагрузок, связанных с инерцией системы и трением, этим же объясняется снижение пунктирной линии по отношению к линии га при ходе вниз. Изучение снятой динамограммы и ее сопоставление с теоретической позволяет выяснить ряд дефектов и неполадок в работе ШСНУ. Так, смещение точек б и г вправо означает пропуски в нагнетательной части насоса в результате растягивания во времени процесса перехода нагрузки Рж с труб на штанги. пропуск в нагнетательной части приводит к заполнению объема цилиндра, высвобождаемого плунжером, перетекающей жидкостью и, таким образом, создает на плунжер подпор снизу. Чем больше утечки в нагнетательной части, тем сильнее смещение точек б и г вправо.
Рис. 10.13. Теоретическая динамограмма (сплошная линия), совмещенная с фактической
(пунктирная линия), нормально работающей штанговой насосной установки при малых глубинах
При пропуске в приемной части (всасывающий клапан) происходит обратное явление. Точки б и г смещаются влево. Утечки жидкости в приемной части раньше времени снимают подпор плунжера снизу и штанги воспринимают вес жидкости быстрее.
На динамограмме отражается вредное влияние газа, попадающего в ШСН. В этом случае переход от точки в к линии аг происходит плавно, что означает сжатие газа в цилиндре под плунжером. Динамограммы позволяют выявить правильность посадки плунжера в цилиндре. Появление короткого спада нагрузки вблизи н. м. т., ниже Ршт, свидетельствует об ударе плунжера о всасывающий клапан. Резкое снижение нагрузки ниже Р = Рш + Рж вблизи в. м. т. означает выход плунжера из цилиндра насоса (если насос невставной), а появление пика у в. м. т. - удары плунжера об ограничительную гайку цилиндра в случае вставного насоса (рис. 10.14).
Подобная расшифровка динамограмм, однако, возможна в ограниченных случаях (малые глубины, жесткие штанги, малые диаметры плунжера). При возникновении колебательных нагрузок, т. с. при динамическом режиме откачки φ = ωL/a > 0,20, динамограмма искажается и в некоторых случаях при нормально работающем скважинном насосе может приобрести очень сложный вид. Это является результатом наложения на нормальную динамограмму нагрузок, вызванных колебательными процессами в штангах, которые в свою очередь есть результат интерференции собственных упругих колебаний штанг и вынужденных колебаний, вызванных работой станка-качалки.
Анализ и расшифровка сложных динамограмм связаны с необходимостью перехода от динамограммы, снятой на верхнем конце колонны штанг (полированный шток), к динамограмме, соответствующий нижнему концу колонны штанг. Это равносильно установке динамографа непосредственно над плунжером. Вообще тлкие диплмогрлфы были созданы, однако их использование связано с двукратным спуском и извлечением штанг
Рис 10 14 Отражение дефектов работы штангового насоса на динамограмме
а - пропуски в нагнетательной части, б - пропуски во всасывающей части, в - влияние газа,
г - низкая посадка плунжера, д - выход плунжера из цилиндра трубного насоса, е - удары плунжера о верхнюю ограничительную гайку вставного насоса
и наноса из скважины и поэтому они не нашли практического применения.
Для подобной диагностики работы ШСНУ и получения глубинной динамограммы используют довольно сложную аналитическую обработку поверхностной динамограммы. При этом составляющие нагрузок, вызванные колебаниями колонны штанг и их упругими деформациями, рассчитывают и исключают при построении глубинной динамограммы. Поверхностная динамо-грамма Р(S) по точкам перестраивается в зависимость нагрузки от времени Р(t). Затем ординаты каждой точки зависимости Р(t] пересчитываются на соответствующие значения глубинной динамограммы. Если координаты всех точек (обычно 36; через каждые 10° угла поворота кривошипа), т. е. значения Р(t] в виде таблицы ввести в ЭВМ, то получение такой глубинной динамограммы упрощается.
На поверхностной динамограмме находят отражения все дефекты работы СК, главным образом удары и люфты в сочленениях шатунно-кривошипного механизма, в шпонках и зубьях редуктора.
Динамометрирование ШСНУ дает важную информацию о работе установки в целом. На автоматизированных промыслах оно осуществляется дистанционно из центрального диспетчерского пункта. С этой целью СК оборудуются специальными тензометрическими датчиками усилий и датчиками хода полированного штока.
- Томский политехнический университет Эксплуатация нефтяных и газовых скважин Курс лекций
- Введение
- 1. Общая характеристика нефтяной залежи
- 1.1. Понятие о нефтяной залежи
- 1.2. Механизм использования пластовой энергии при добыче нефти
- 2. Источники пластовой энергии
- 2.1. Пластовые давления
- 2.1.1. Статическое давление на забое скважины
- 2.1.2. Статический уровень
- 2.1.3. Динамическое давление на забое скважины
- 2.1.4. Динамический уровень жидкости
- 2.1.5. Среднее пластовое давление
- 2.1.6. Пластовое давление в зоне нагнетания
- 2.2. Приток жидкости к скважине
- 2.3. Режимы разработки нефтяных месторождений
- 2.4. Водонапорный режим
- 2.5. Упругий режим
- 2.6. Режим газовой шапки
- 2.7. Режим растворенного газа
- 2.8. Гравитационный режим
- 3. Технология и техника воздействия на залежь нефти
- 3.1. Цели и методы воздействия
- 3.2. Технология поддержания пластового давления закачкой воды
- 3.2.1. Размещение скважин
- 3.3. Основные характеристики поддержания пластового давления закачкой воды
- 3.4. Водоснабжение систем ппд
- 3.5. Техника поддержания давления закачкой воды
- 3.5.1. Водозаборы
- 3.5.2. Насосные станции первого подъема
- 3.5.3. Буферные емкости
- 3.5.4.Станции второго подъема
- 3.6. Оборудование кустовых насосных станций
- Основные характеристики бкнс
- 3.7. Технология и техника использования глубинных вод для ппд
- 3.8. Поддержание пластового давления закачкой газа
- 3.9. Методы теплового воздействия на пласт
- 3.10. Техника закачки теплоносителя в пласт
- 3.11. Внутрипластовое горение
- 4. Подготовка скважин к эксплуатации
- 4.1. Конструкция оборудования забоев скважин
- 4.2. Приток жидкости к перфорированной скважине
- 4.3. Техника перфорации скважин
- 4.4. Пескоструйная перфорация
- 4.5. Методы освоения нефтяных скважин
- 4.6. Передвижные компрессорные установки
- 4.7. Освоение нагнетательных скважин
- 5. Методы воздействия на призабойную зону скважины
- 5.1. Назначение методов и их общая характеристика
- 5.2. Обработка скважин соляной кислотой
- 5.3. Термокислотные обработки
- 5.4. Поинтервальная или ступенчатая ско
- 5.5. Кислотные обработки терригенных коллекторов
- 5.6. Техника и технология кислотных обработок скважин
- 5.7. Гидравлический разрыв пласта
- 5.8. Осуществление гидравлического разрыва
- 5.9. Техника для гидроразрыва пласта
- 5.10. Тепловая обработка призабойной зоны скважины
- 5.11. Термогазохимическое воздействие на призабойную зону скважины
- 5.12. Другие методы воздействия на призабойную зону скважин
- 6. Исследование скважин
- 6.1. Назначение и методы исследования скважин
- 6.2. Исследование скважин при установившихся режимах
- 6.3. Исследование скважин при неустановившихся режимах
- 6.4. Термодинамические исследования скважин
- 6.5. Скважинные дебитометрические исследования
- 6.6. Техника и приборы для гидродинамических исследований скважин
- 7. Основы теории подъема жидкости в скважине
- 7.1. Физика процесса движения газожидкостной смеси в вертикальной трубе
- 7.1.1. Зависимость подачи жидкости от расхода газа
- 7.1.2. Зависимость положения кривых q (V) от погружения
- 7.1.3. Зависимость положения кривых q(V) от диаметра трубы
- 7.1.4. К. П. Д. Процесса движения гжс
- 7.1.5. Понятие об удельном расходе газа
- 7.1.6. Зависимость оптимальной и максимальной подач от относительного погружения
- 7.1.7. Структура потока гжс в вертикальной трубе
- 7.2. Уравнение баланса давлений
- 7.3. Плотность газожидкостной смеси
- 7.4. Формулы перехода
- 8. Эксплуатация фонтанных скважин
- 8.1. Артезианское фонтанирование
- 8. 2. Фонтанирование за счет энергии газа
- 8. 3. Условие фонтанирования
- 8. 4. Расчет фонтанного подъемника
- 8. 5. Расчет процесса фонтанирования с помощью кривых распределения давления
- 8. 6. Оборудование фонтанных скважин
- 8.6.1. Колонная головка
- 8.6.2. Фонтанная арматура
- 8.6.3. Штуцеры.
- 8.6.4. Манифольды
- 8. 7. Регулирование работы фонтанных скважин
- 8. 8. Осложнения в работе фонтанных скважин и их предупреждение
- 8.8.1. Открытое фонтанирование
- 8.8.2. Предупреждение отложений парафина
- 8.8.3. Борьба с песчаными пробками
- 8.8.4. Отложение солей
- 9. Газлифтная эксплуатация скважин
- 9.1. Общие принципы газлифтной эксплуатации
- 9.2. Конструкции газлифтных подъемников
- 9.3. Пуск газлифтной скважины в эксплуатацию (пусковое давление)
- 9.4. Методы снижения пусковых давлений
- 9.4.1. Применение специальных пусковых компрессоров
- 9.4.2. Последовательный допуск труб
- 9.4.3. Переключение работы подъемника с кольцевой системы на центральную
- 9.4.4. Задавка жидкости в пласт
- 9.4.5. Применение пусковых отверстий
- 9.5. Газлифтные клапаны
- 9.6. Принципы размещения клапанов
- 9.7. Принципы расчета режима работы газлифта
- 9.8. Оборудование газлифтных скважин
- 9.9. Системы газоснабжения и газораспределения
- 9.10. Периодический газлифт
- 9.11. Исследование газлифтных скважин
- 10. Эксплуатация скважин штанговыми насосами
- 10.1. Общая схема штанговой насосной установки, ее элементы и назначение
- 10.2. Подача штангового скважинного насоса и коэффициент подачи
- 10.3. Факторы, снижающие подачу шсн
- 10.3.1. Влияние газа
- 10.3.2. Влияние потери хода плунжера
- 10.3.3. Влияние утечек
- 10.3.4. Влияние усадки жидкости
- 10.3.5. Нагрузки, действующие на штанги, и их влияние на ход плунжера
- 10.4. Оборудование штанговых насосных скважин
- 10.4.1. Штанговые скважинные насосы
- 10.4.2. Штанги
- Характеристики штанг и муфт
- 10.4.3. Насосные трубы
- Характеристики насосно-компрессорных труб
- 10.4.4. Оборудование устья скважины
- 10.4.5. Канатная подвеска
- 10.4.6. Штанговращатель
- 10.4.7. Станки-качалки (ск)
- Техническая характеристика станков-качалок
- 10.5. Исследование скважин, оборудованных штанговыми насосными установками
- 10.5.1. Эхолот
- 10.5.2. Динамометрия шсну
- - Перо геликсной пружины, 7 - геликсная пружина, 8 - капиллярная трубка, соединяющая геликсную пружину с полостью силоизмерительной камеры - 9, 10 - нажимной диск,
- 10.5.3. Динамограмма и ее интерпретация
- 10.6. Эксплуатация скважин штанговыми насосами в осложненных условиях
- 11. Эксплуатация скважин погружными центробежными электронасосами
- 11.1. Общая схема установки погружного центробежного электронасоса
- 11.2. Погружной насосный агрегат
- 11.3. Элементы электрооборудования установки
- Характеристика кабелей, применяемых для упцэн
- 11.4. Установка пцэн специального назначения
- 11.5. Определение глубины подвески пцэн
- 11.6. Определение глубины подвески пцэн c помощью кривых распределения давления
- 12. Гидропоршневые насосы
- 12.1. Принцип действия гидропоршневого насоса
- 12.2. Подача гпн и рабочее давление
- 13. Погружные винтовые насосы
- 14. Раздельная эксплуатация пластов одной скважиной
- 14.1. Общие принципы
- 14.2. Некоторые схемы оборудования скважин для раздельной эксплуатации пластов
- 14.3. Раздельная закачка воды в два пласта через одну скважину
- 15. Ремонт скважин
- 15.1. Общие положения
- Гидравлический разрыв пласта.
- 15.2. Подъемные сооружения и механизмы для ремонта скважин
- - Опоры мачты; 2 - пульт управления; 3 - барабан лебедки;
- - Кулисный механизм для подъема мачты; 5 - опоры мачты в рабочем положении;
- - Плашка; 6 - опроный фланец; 7 - водило; 8 - вал вилки включения маховика;
- 15.3. Технология текущего ремонта скважин
- 15.4. Капитальный ремонт скважин
- 15.5. Новая технология ремонтных работ на скважинах
- 15.6. Ликвидация скважин
- 16. Эксплуатация газовых скважин
- 16.1. Особенности конструкций газовых скважин
- 16.2. Оборудование устья газовой скважины
- 16.3. Подземное оборудование ствола газовых скважин при добыче природного газа различного состава
- 16.4. Оборудование забоя газовых скважин
- 16.5. Расчет внутреннего диаметра и глубины спуска колонны нкт в скважину
- 16.5.1. Определение внутреннего диаметра колонны нкт
- 16.5.2. Определение глубины спуска колонны нкт в скважину
- 16.6. Способы и оборудование для удаления жидкости с забоя газовых и газоконденсатных скважин
- 16.7. Одновременная раздельная эксплуатация двух газовых пластов одной скважиной
- 17. Системы промыслового сбора и подготовки нефти и природного газа
- 17.1. Системы сбора скважинной продукции
- 17.2. Промысловая подготовка нефти
- 17.2.1. Дегазация
- 17.2.2. Обезвоживание
- 17.2.3. Обессоливание
- 17.2.4. Стабилизация
- 17.2.5. Установка комплексной подготовки нефти
- 17.3. Системы промыслового сбора природного газа
- 1, 9, 11, 12 - Насосы; 2,5 - теплообменники; 3 - отстойник; 4 - электродегидратор;
- VIII- установка подготовки газа; гсп- групповой сборный пункт; цсп-
- 17.4. Промысловая подготовка газа
- 17.4.1. Очистка газа от механических примесей
- 17.4.2. Осушка газа
- 17.4.3. Очистка газа от сероводорода
- 17.4.4. Очистка газа от углекислого газа
- Список рекомендуемой литературы