8.1. Модели вертикальной (внутренней) и латеральной неоднородности
и гипотезы их образования и эволюции Земли
В основе гипотез эволюции Земли и интерпретации геологических данных (латеральных неоднородностей и тектонических процессов), полученных при изучении земной коры, заложены 4 варианта представлений: 1) о сжимающейся Земле и уменьшении её объёма; 2) о расширяющейся Земле и увеличении её объёма; 3) о постоянстве её объёма; 4) о пульсационном (то уменьшении, то увеличении) изменении её радиуса.
Представления о внутреннем строении Земли базируются, частично, на гипотетических построениях, и в основном, на физико-математических расчетах и данных по сейсмическим исследованиям.
Контракционная гипотезабыла предложена в 1829 году Ж.Эли де Бомоном и почти целое столетие безраздельно владела умами геологов. Она связана с космогонией Канта-Лапласа представлениями об изначально огненно-жидкой Земле, её постепенном остывании и сжатии, образовании охлаждённой сравнительно тонкой коры, которая на жидком субстрате сжимается, по мере уменьшения объёма Земли, образуя на её поверхности складки – горы наподобие сморщивания кожуры печёного яблока.
Гипотеза изостазииЭри и Пратта вполне уживалась с контракционной гипотезой. Сущность её в том, что в результате эпейрогенических вертикальных движений происходило уравновешивание блоков земной коры по мощности за счет разрушения одних и накопления материала на других.
ИдеиГ. Штилле, основанные на его представлениях об орогенических и эпейрогенических движениях, всё ещё укладывались в рамки контракционной гипотезы, так же как не противоречили ей ни «овалы» В.В.Белоусова, ни окрытие радиоактивного распада.
Геосинклинальная гипотеза или теория гесинклиналейпо сути является порождением контракционной гипотезы. Она овеществила тектонические формы, наполнив их горнопородным содержанием, и дала начало учению о геологических формациях.
Во второй половине XIX века американцы Д. Холл и Д. Дэн ввели понятие «геосинклиналь». Затем оно получило распространение в Европе, и дальнейшее развитие в первой половине XX века в работах огромного числа геологов мира – Дана (Dana), Бертрана (Bertrand), Ога (Haug), Шухерта (Schuchert), Г.Штилле (Stille), В.А.Обручева, Г.Штейнмана, А.Д.Архангельского, Н.С.Шатского, В.В.Белоусова, М.В.Муратова, А.В.Пейве, В.Е.Хаина, Н.П.Хераскова, Ю.А.Косыгина и мн.др.
Сущность этого учения сводится к тому, что возникновение мощных, смятых в складки осадочных толщ обусловлено глубоким прогибанием земной коры и последующим их поднятием. На начальном или геосинклинальномэтапе происходило накопление мощных толщ осадков в протяженных прогибах – геосинклиналях, разделённых более жесткими структурами – антиклиналями или срединными массивами. Затем погружение сменялось поднятием, сопровождавшимся формированием разнообразных складчатых и разрывных структур, метаморфизмом и магматизмом. Поднятие завершалось наорогенномэтапе образованием складчатой области или орогена. После тафрогенной стадии и последующего отмирания орогена наступал платформенный режим развития области. При признании колебательных и разнонаправленных перемещений и деформаций, приоритет в учении о геосинклиналях отдается радиальным движениям, при незначительных латеральных перемещениях.
В основу классификаций геосинклиналей были положены разные признаки – связь с магматизмом, мощности и тип коры, отношение к крупным структурным элементам коры, источники поступающего материала, по характеру магматизма и вулканизма, по составу осадочных формаций и т.д. Но главными признаками геосинклиналей были их зональность и этапность в развитии – смена погружений интенсивным поднятием и складчатостью, как результат проявления эпейрогенических и орогенических вертикальных движений фрагментов земной коры.
Контракционнаягипотеза перестала быть эффективной после того, когда была подорвана её основа – представление о жидком состоянии недр Земли. С установлением твёрдого состояния мантии, получением доказательств прохождения продольных волн до границы ядра и мантии, с открытием глубокофокусных землетрясений стали быстро устанавливаться признаки доминирования вертикальных движений.
Несмотря на то, что уже было много доказательств (геологических, данных поверхностных нивелировок и триангуляций), подтверждающих превышение горизонтальных перемещений в 2-4 раза по сравнению с вертикальными, последним отводилась главенствующая роль, а горизонтальные признавались как их производные. Данные представления в тектонике базировались на признании отсутствия жидких или высокопластичных оболочек в верхней части мантии, которые могли бы обеспечить горизонтальные перемещения, а переходная жидкая зона ядро-мантия слишком далека от поверхности и не могла контролировать тектонические процессы в земной коре. Данное направление получило название фиксизмаи господствовало в тектонике с 20-ых по 60-ые годы XX века.
Гипотеза Вегенера. В 1912 г. А. Вегенер впервые сформулировал «гипотезу перемещения», т.е. представление о значительных горизонтальных перемещениях материков. Исходным пунктом гипотезы Вегенера послужило совпадение берегов Атлантического океана при рассмотрении Мировой карты (рис. 8.1).
Рис. 8.1. Совмещение континентальных единиц, разобщённых при раскрытии Атлантического океана в позднем мезозое-кайнозое. По Э.Буларду и др. (1965). |
Работа А. Вегенера положила начало мобилизму.До этого существовали мобилистические концепции Е.В. Быханова (1877), оставшиеся не замеченными научной геологической общественностью, И.Ф. Тейлора (1912) и др. Но только после публикации работы А. Вегенера «Происхождение материков и океанов» в результате ожесточённых научных споров и дискуссий эта гипотеза, в конце концов, вылиласьв гипотезу глобальной плейттектоники.
Гипотеза расширяющейся Землибыла предложена в 1933 году О.С. Хильгенбергом, позднее её развивали Л. Эгьед (1957), С.У.Кери (1958) и др. Она, по сути, принадлежит к тому же семейству, что и гипотеза А. Вегенера, но объясняет раздвижение материков не их плаванием на «симе», а за счёт расширения Земли. Материки, таким образом, составляли основу первичной земной поверхности, а океаны образовывались заново. Учитывая, что площадь океанов составляет ныне около 70% современной поверхности Земли, Земля должна была быть маленькой (с радиусом в два раза меньшим, чем у современной Земли), а сила тяжести в четыре раза больше современной, что не позволило бы выжить тем организмам, которые жили в то время. Во-первых, это противоречит известным данным (согласно гипотезе Иорданс-Дирака), что гравитационная постоянная с кембрия до наших дней уменьшилась лишь на 4%. Во-вторых, последующее разуплотнение вещества и грандиозное расширение не объясняет ни структуры фрагментов коры, ни их современное расположение и т.д. К тому же, механизм, обуславливающий расширение Земли, совершенно неясен.
Пульсационная гипотезаЕ.Е. Милановского – это признание пульсационного развития Земли, т.е. смены эпох сжатия и растяжения в истории Земли и базируется она на трёх предпосылках – признании периодичности тектонических движений, вулканизма и эвстатических колебаний уровня Мирового океана. Выделяется 13 эпох сжатия (складчатости), начальные периоды активизации рифтовых структур, отвечающие промежуткам между эпохами сжатия и главные периоды активизации рифтовых зон и проявления «негеосинклинального вулканизма», соответствующие эпохам растяжения. Затем они сопоставляются с глобальными эвстатическими колебаниями уровня океана. Число эвстатических циклов равно числу циклов тектонической активности. Регрессии соответствуют эпохам сжатия и усиления деформаций, а трансгрессии – эпохам растяжения (рифтогенеза).
Однако нужно отметить, что процесс пульсации не может быть выражен достаточно объективно двумерными диаграммами, где на оси геологического времени наносятся величины, отражающие интенсивность тех или иных процессов. Этот процесс представлен по-разному для разных участков Земли и схемы пульсации или смены режимов гораздо сложнее и разнороднее.
Сферически-симметрические моделиЗемли (Б.Гуттенберга, К.Буллена. Ф.Джефриса),основанные на сейсмических данных, появились в 30-50-ых годах XX столетия. Им предшествовали многие сейсмологические открытия, касающиеся выяснения структуры Земли. Это работы Э. Вихерта, Л. Гейгера, Б. Гутенберга, М. Мохоровичича, Б. Голицына и др. Существующая ныне модель глубинного строения Земли учитывает все прежние достижения сейсмических исследований, показывает довольно дробное и сложное деление на вертикальные сферы и латеральные неоднородности, которые уже отклоняются от сферической симметрии.
Сферически-симметрические моделиЗемли в плотностном варианте, касающиеся глубин Земли, в отличие от сейсмологических моделей в большей степени базируются на теоретических предпосылках, основанных на гипотетических предпосылках. Исходя из того, что средняя плотность Земли намного превышает среднюю плотность пород, распространённых на поверхности, предполагается возрастание её с глубиной. Были предложены модели с плавным увеличением плотности с глубиной или с более контрастным. В плотностных моделях, увязанных с сейсмологическими, предполагалось, что изменение плотности до глубины 1200 км происходит по одному линейному закону, глубже – по другому, а в ядре плотность остаётся постоянной. После того, как было доказано существование фазовых переходов и показана тесная взаимосвязь физических констант (плотности, давления, ускорения силы тяжести, скорости продольных и поперечных волн, модуля Юнга, модуля сдвига, коэффициента Пуассона и др.), стало ясно, что приходится считаться с множественностью вариантов моделей глубинного строения Земли, которые в большинстве своём укладываются в мозаично-блоково-сферические.
Гипотеза эволюции Землипо В.П. Мясникову и В.Е. Фадееву основана на рассмотрении только физической стороны геодинамического механизма и использует теорию конвективных движений вещества Земли, приведших к формированию ядра от поверхности Земли книзу. В её основе лежат физико-математические расчёты для Земли, как двухэлементного (ядро, мантия) планетного тела, без привязки к очень тонкой (менее 1% радиуса Земли) коре и запечатленного на её поверхности геологического рисунка. Предполагается, что первичные неоднородности должны были вызывать конвективные процессы, которые ведут к расслоению Земли на концентрические оболочки, и, в первую очередь, на мантию и ядро, что соответствует общим свойствам планет. Затем, на некоторой стадии существования планеты происходит опускание тяжёлого вещества в глубину Земли и в результате планета приходит в седиментационное равновесие, характеризующееся конечным размером ядра. Формирование ядра может начинаться с поверхности Земли или в некотором промежуточном слое. При таком механизме термическая энергия Земли должна быть отнесена за счёт гравитационного фактора, поэтому авторами учитывались ещё физико-химические превращения и диффузия, проявившиеся позднее – после разогрева, которые активизировали процессы конвекции и тектоническую активность на поверхности Земли.
Геодинамическая гипотезаЕ.В. Артюшкова заключается в связи тектонически активных зон с системами «каналов», по которым из нижней мантии поступает к верхним слоям Земли, так называемый, «легкий материал». По Е.В. Артюшкову в теле мантии с её современной вязкостью гравитационная дифференциация практически невозможна. Она должна была проходить в отдельных жидких или маловязких горизонтах (астеносфера и внешнее ядро), причём суть процесса представляется следующим образом. Масса ядра соответствует значительной доле массы Земли – около 30%. Поэтому ядро должно состоять из одного из наиболее распространённых в Земле веществ. Следовательно, и в нижней мантии концентрация вещества ядра должна быть высокой. Низы мантии частично плавятся и «ядерное» вещество присоединяется к ядру, оставляя выше себя в расплавелегкий материал, который внедряется в вещество мантии и достигает верхних слоёв Земли. Вертикальные движения литосферы возникают только тогда, когда поднимающиеся из мантии крупные массы лёгкого нагретого материала подходят вплотную к этому слою, причём формы рельефа изостатически компенсируются на поверхности (или в зоне) Мохо за счёт физико-химических изменений вещества, а в астеносфере – за счёт вязкого течения.
Гипотеза Е.В. Артюшкова привлекает геологические идеи и физические данные, полученные на поверхности Земли. Она содержит представление о связи тектонических структур и движений в гипергенной оболочке Земли с большими глубинами, охватывающими целиком мантию, и создает стимул к размышлениям о природе унаследованности в тектонике. Географическое распределение и характеристики астеносферных зон в общих чертах коррелируются с областями современной тектонической активности, но не обнаруживают какой-либо связи с устойчивыми во времени геологическими направлениями (складчатыми системами, глубинными разломами и др.), что можно, вероятно, объяснить смещением и изменением астеносферных зон в ходе геологической истории.
Геотектоническая гипотезаА.И. Суворова почти целиком основана на геологических данных, геофизические материалы отражают лишь мощности коры и глубины очагов землетрясений. Она основана на почти априорном признании пластичного субстрата коровых глыб или так называемыхтектонопарвместо привычных геосинклинальных и платформенных областей, талассократонов и т.д. Теконопары в понимании А.И. Суворова - «системы из двух равновеликих, пространственно и парагенетически взаимосвязанных структурных элементов, характеризующихся полярно различными динамо-кинематическими параметрами». Каждая тектонопара состоит из синхронно развивающихся двух структур - дугообразного поднятия и примыкающей к нему с внутренней стороны депрессии. На поднятиях утолщённая кора, тонкий осадочный слой, пережатые линейные складки и сдвиго-надвиги, преобладание динамометаморфизма и интрузивного магматизма, а в депрессиях, при мозаичной структуре сбросов и раздвигов и более мощной толще осадков, преобладание эффузивной деятельности. Выделяются континентальные, переходные и океанические тектонопары. Они не перекрывают всю поверхность планеты, формируются глубинным латеральным течением масс при глубинной гетерогенности литосферы, и их размещение и ориентировка не подтверждают «представлений о повсеместном расширении океанического дна, о глобальном дрейфе континентальных плит и вообще отвергают преобладание какой-либо одной для всей Земли модели движений». Гипотеза не противоречит соображениям о преобладании мозаично-блоковой структуры Земли над сферически-симметрической или о существовании обеих структур, а также о несплошном распространении астеносферы и об исторической изменчивости свойств и положения астенозон.
Глобальная тектоника литосферных плит (плейттектоника) и её основные положения.Тектоника плит (plate tectonics; тектоника литосферных плит или новая глобальная тектоника – Isacks et al, 1968) – новейшая геологическая гипотеза, рассматривающая литосферу (внешнюю оболочку) Земли как систему подвижных блоков (литосферных плит) и связывающая процессы дифференциации вещества мантии Земли и формирования океанской и континентальной земной коры с движением литосферных плит. Континенты образуют часть плит и движутся вместе с ними, подобно брёвнам, вмёрзшим в льдины.
Рис. 8.2. Движение литосферных плит по поверхности сферы. Э – «эйлеров полюс»; α – угол вращения, соответствующий перемещению точек А и В. Трансформные разломы дают направление «эйлеровых широт». Справа схема по К.Ле Пишону и др. (1973). |
- Геологическое картирование
- Цели и задачи геологического картирования
- Топографическая карта и топографическая основа
- Особенности, масштабы и номенклатура топографических карт.
- Геологическая карта и другие виды геологической графики Общие сведения о геологических картах
- Типы геологических карт
- Виды геологических карт
- Общие требования к оформлению геологических карт
- Условные знаки и условные обозначения геологических карт
- Легенда (условные обозначения)
- Стратиграфическая колонка
- Геологические разрезы
- Изображение геологических границ
- Глава I: Геологическое изучение и картирование осадочных пород
- 1.1.Слой и слоистые комплексы
- 1.1.1.Слоистость:
- Формы слоистости.
- Генетические типы слоистости.
- Взаимоотношения слоистых толщ
- Закономерности сочетания слоёв
- Строение поверхностей наслоения. Определение кровли и подошвы слоёв
- Сущность и условия образования слоистых толщ
- 1.2. Первичные (ненарушенные) и нарушенные
- 1.2.1.Горизонтальное залегание слоёв
- 1.2.2. Наклонное залегание слоёв
- 1.2.3. Нормальное и опрокинутое залегание
- Определение элементов залегания наклонно залегающих геологических границ.
- Определение истинной мощности слоя при наклонном залегании
- Построение выхода пласта на поверхность на карте с топографической основой
- 1.2.4. Согласное и несогласное залегание пород
- Типы несогласий
- Строение поверхностей несогласий.
- Критерии установления несогласий при геологическом картировании.
- Глава 2. Геологическое изучение разрывов в горных породах
- 2.1. Трещины и кливаж в горных породах (разрывы без смещения).
- 2.1.1. Трещины и трещиноватость
- 2.1.2. Нетектонические трещины.
- 2.1.3. Прототектонические трещины
- 2.1.4. Тектонические трещины
- Трещины отрыва
- Трещины скалывания
- 2.1.5. Отдельность
- 2.1.6. Изучение трещиноватости
- 2.2. Разрывы со смещением
- 2.2.1. Сбросы
- 2.2.2. Взбросы
- 2.2.3. Грабены
- 2.2.4. Горсты
- 2.2.5. Сдвиги
- 2.2.6. Раздвиги
- 2.2.7. Надвиги
- 2.2.8. Покровы
- 2.2.9. Механизм образования и происхождение разрывов Образование или происхождение разрывов
- 2.2.10. Определение возраста, типа и структурных элементов разрывов Определение возраста
- Определение типов разрывных нарушений
- Определение направления смещения крыльев
- Определение амплитуды смещения
- Признаки наличия разрывных нарушений
- 1) По геологическим признакам
- 2) По геоморфологическим признакам:
- 3) По гидрологическим признакам:
- Условные обозначения разрывных нарушений
- Глава 3: Складчатые формы залегания пород
- 3.1. Складки и их элементы и параметры
- 3.2. Классификация складок
- 3.2.1. Морфологическая классификация
- 3.2.2. Генетическая классификация складок
- Складки, обусловленные геологическими условиями
- 3.3. Изучение складчатых форм
- 3.4. Изображение складчатых форм
- Литература
- Глава 4. Геологическое картирование интрузивных образований
- 4.1. Общая характеристика форм и особенностей залегания интрузивных пород
- 4.2. Полевое изучение интрузивов и элементы структурно-петрологического картирования
- Оконтуривание интрузивов
- Определение характера контакта
- Методы определения положения и элементов залегания контактов интрузивных тел
- Восстановление морфологии эродированной кровли интрузивов
- Определение возраста интрузий
- Определение возраста интрузий на разрезе и геологической карте
- Определение верха и низа (кровли и подошвы)
- 4.3. Внутреннее строение интрузивных тел
- 4.3.1. Внутреннее строение недифференцированных интрузивов
- 4.3.2. Внутреннее строение дифференцированных интрузивов
- 4.3.3. Внутреннее строение расслоенных интрузивов
- 4.3.4. Изучение прототектоники интрузивных пород
- Структурный блок
- Глава 5: Геологическое картирование вулканических пород
- 5.1. Вулканические аппараты и их строение
- 5.1.1. Элементы вулканического аппарата
- 5.1.2. Разновидности вулканов и их строение
- 5.2 Особенности образования и условия залегания вулканических пород
- 5.2.1. Лавовые потоки
- 5.2.2. Пирокластические пласты
- 5.2.3. Покровы (покровные и эксплозивные фации)
- 5.2.4. Экструзивные фации
- 5.2.5.Жерловые фации
- 5.2.6. Субвулканические фации
- 5.2.7. Пирокластические и пирокласто-осадочные фации
- 5.3 Внутреннее строение
- 5.3.1. Внутреннее строение лавовых потоков и экструзий
- 5.3.2. Внутреннее строение пластов вулканокластических пород
- 5.3.3. Внутреннее строение пластов вулканогенно-осадочных пород
- 5.3.4. Полевое изучение вулканогенных пород
- Палеовулканологические исследования
- Глава 6: Геологическое картирование метаморфических пород
- 6.1. Метаморфизм и метаморфические породы
- 6.1.1. Типы и фации метаморфизма
- 6.1.2. Типы метаморфических комплексов и основные разновидности метаморфических пород
- Метаморфиты
- Динамометаморфические породы
- Мигматиты
- Метасоматиты
- 6.2. Общие особенности строения и залегания метаморфических пород
- 6.2.1. Морфология тел метаморфических пород и формы залегания
- 6.2.2. Текстуры и структурные элементы метаморфических пород
- 6.2.3. Структурные формы метасоматических пород
- 6.3. Методы изучения метаморфических толщ
- 6.3.1. Петрографические методы изучения метаморфических пород
- 6.3.2. Литологические методы метаморфических пород
- 6.3.3. Петрогеохимические методы определения первичной природы метаморфическихпород
- 6.3.4. Изотопно-геохимические методы
- 6.3.5. Стратиграфические методы
- 6.3.6. Методы формационного анализа
- 6.3.7. Структурный анализ
- Определение разновозрастности и последовательности развития структурных форм и структурных элементов.
- Построение структурно-возрастной шкалы.
- Определение последовательности эндогенных процессов.
- Построение шкалы относительной последовательности эндогенных процессов.
- Выделение тектоно-метаморфических циклов.
- Выделение и корреляция разновозрастных свк (структурно-вещественных комплексов) с моно- и полициклическим развитием.
- 6.3.8. Геофизические методы
- 6.3.9. Дешифрирование аэрофото- и космофотоснимков
- 6.4 Изображение метаморфических пород на геологической карте
- 6.4.1. Особенности картирования метаморфических образований
- Документация и отображение структурных элементов дислоцированных метаморфических пород
- Литература
- 7.1. Разновидности кольцевых структур
- 7.1.1. Метеоритные кратеры и астроблемы и
- 7.1.2. Соляные купола
- 8.1. Модели вертикальной (внутренней) и латеральной неоднородности
- 8.2. Основные этапы образования и развития земной коры
- 8.3. Внутреннее строение Земли
- Земная кора
- Литосфера и астеносфера
- Тектоносфера
- 8.4. Основные структурные единицы литосферы
- 8.4.1. Литосферные плиты
- 8.4.2. Границы литосферных плит
- 8.4.3. Внутренние области океанов
- Срединно-океанические хребты
- Трансформные разломы
- Горячие точки
- Абиссальные равнины
- Внутриплитные возвышенности и хребты
- Микроконтиненты
- Возраст и происхождение океанов
- 8.4.4. Области перехода континент–океан
- Пассивные континентальные окраины
- Активные континентальные окраины
- Вулканические дуги
- Трансформные окраины
- 8.4.5. Области континентов
- Континентальные платформы
- Складчатые пояса континентов
- Области внутриконтинентального орогенеза
- Террейны
- 9.1. Масштабы и виды геологосъёмочных работ
- 9.1.1. Масштабы геологических съёмок
- 9.1.2. Виды геологических съёмок
- 9.2. Основы организации геологосъёмочных работ
- 9.2.1. Предварительное изучение района работ
- 9.2.2. Составление проекта геолого-съёмочных и поисковых работ
- 9.3. Основы проведения геологосъёмочных работ
- 9.3.1. Полевой период геологосъёмочных работ
- 9.3.2. Проведение геологосъёмочных работ
- Геологосъёмочные маршруты
- Ведение (описание) геологических маршрутов.
- Изучение и описание обнажений
- Заключительный этап полевых работ
- 9.4. Камеральный период геологосъёмочных работ
- 9.4.1. Обработка и оформление полевого фактического материала.
- Журнал (каталог) образцов (Форма №2) Левая сторона развернутого листа.
- 9.4.2. Построение графических приложений.
- 9.4.3. Составление отчета.
- Рекомендуемая литература Основная:
- Дополнительная:
- Содержание программы и методические рекомендации для самостоятельныой работы
- Программой дисциплины предусмотрено выполнение двух контрольных работ.
- Перечень
- «Мурманский государственный технический университет» Апатитский филиал мгту
- Рабочая программа
- I. Введение.
- II. Краткое содержание программы практики.
- Методика подготовки и проведения производственной геологической практики.
- Приложение №1
- I. Введение.
- II. Краткое содержание программы практики.
- Методика подготовки и проведения учебной геологической практики.
- II. Полевой период
- Приложение №1 календарный план
- II. Полевой этап:
- III. Камеральный период: