7.3. Понятие об относительном возрасте горных пород
Во многих случаях для решения вопросов теоретической и практической геологии необходимо установить АБСОЛЮТНЫЙ возраст пород, выраженный в обычных единицах времени.
Исторически первыми для этих целей были применены ГЕОЛОГИЧЕСКИЕ методы, большинство из которых основано на изучении скорости геологических процессов. При этом полагается, что скорость процессов неизменна во времени. Например, был сделан подсчет возраста земной коры по суммарной мощности морских осадочных пород. При этом подсчете исходят из постулата постоянной скорости накопления осадков - 1 м в 7 тыс. лет.
СОЛЕВОЙ метод основан на предположении, что все соли Мирового океана возникли за счет солей, приносимых водами с суши и ежегодный принос солей не менялся со временем. Геологические методы далеки от точности, и в силу многих допущений они являются ненадежными.
Кардинальное решение вопроса определения абсолютного возраста пород стало возможным в XX в., в связи с использованием радиоактивных элементов, содержащихся в минералах.
Все РАДИОЛОГИЧЕСКИЕ методы основаны на явлении самопроизвольного распада радиоактивных элементов и исходят из предпосылки, что скорость этого процесса (период полураспада) для каждого радиоактивного элемента является величиной постоянной. Период полураспада Т, т.е. времени, в течение которого распадается половина атомов данного вещества, определяется:
Где - константа, характеризующая скорость радиоактивного распада; - средняя продолжительность жизни радиоактивных атомов.
Очевидно, что в каждом минерале, содержащим радиоактивный элемент, распад начинается с момента образования минерала. Исходя из Известной скорости распада, зная содержание элемента и продуктов его Распада в минерале, можно установить его возраст.
В настоящее время применяются следующие радиологические методы:
1. Ураново–ториево-свинцовый метод - основан на превращении урана и тория в радиоактивный свинец:
, ,
Для вычисления возраста относительно молодых минералов применяется формула:
Изотопы радиоактивных методов определяются с помощью специальных приборов - масс-спектрометров. Этот метод надежен, однако минералы, пригодные для анализа, сравнительно редки.
2. Калий-аргоновый метод основан на том, что изотоп калия с атомной массой 40 в результате захвата ядром электрона с ближайшего к нему К-уровня превращается в аргон . Возраст определяют по отношению. Чем оно больше, тем древнее объект.
Расчетная формула для определения возраста данным методом
имеет вид:
где инайденные весовые количества изотопов аргона и калия.
3.Рубидиево-стронцевый метод - основан на превращении изотопов рубидия с атомной массой 81 в стронций с тем же атомным номе ром. Применяется при определении возраста магматических и метаморфических пород.
4.Углеродистый метод - используется для определения возраста четвертичных отложений и в археологии. Это связано с тем, что период полураспада изотопа углерода составляет всего 5,5-6 тыс. лет. При этом можно определять возраст образований не превышающий50-70 тыс. лет. Изотопобразуется в атмосфере под действием космических лучей и хорошо усваивается растениями, а после их отмирания переходит в горные породы.
Радиологические методы позволили выразить в годах продолжительность наиболее крупных отрезков в истории земной коры. Этими методами установлено, что формирование земной коры началось 3,6-4,5 млрд. лет назад.
- Инженерная геология Конспект лекций
- Содержание
- Введение
- Лекция № 1 общие сведения о земле. Физические поля земли.
- 1.1. Форма и основные параметры Земли
- 1.2. Гравитационное поле Земли
- 1.3. Тепловое поле Земли
- 1.4. Магнитное поле Земли
- Лекция № 2 строение и состав земной коры
- 2.1. Строение Земли
- 2.2. Строение земной коры
- 2.3. Химический состав земной коры
- Лекция № 3 эндогенные геологические процессы. Магматизм и метаморфизм.
- 3.1. Причины зарождения и миграции магматических расплавов
- 3.2. Эффузивный магматизм
- 3.3. Интрузивный магматизм
- 4.1. Общие сведения о тектонических движениях
- 4.2. Колебательные тектонические движения
- 4.3. Дислокационные тектонические движения
- 4.4. Значение тектонических движений
- 4.5. Основные сведения о землетрясениях
- Лекция № 5 экзогенные геологические процессы. Выветривание, эоловые процессы
- 5.1. Общие черты экзогенных геологических процессов
- 5.2. Физическое выветривание
- 5.3. Химическое выветривание
- 5.4. Продукты выветривания, кора выветривания
- 5.5. Эоловые процессы
- Лекция № 6 геологическая деятельность вод поверхностного стока
- 6.1. Общие сведения о геологической работе вод поверхностного стока
- 6.2. Закономерности процессов эрозии
- 6.3. Аккумулятивная работа русловых поверхностных вод
- 6.4. Геологическая деятельность ледников
- 6.5. Денудация материков
- Лекция № 7 геологическое летоисчисление.
- 7.1. Основные этапы эволюции Земли
- 7.2. Относительный возраст горных пород и методы его определения
- 7.3. Понятие об относительном возрасте горных пород
- Лекция № 8 графические геологические материалы и работа с ними
- 8.1. Методы получения геологической информации
- 8.2. Геологическая карта и другие виды геологической информации
- Лекция № 9 общие сведения о воде в природе. Воднофизические свойства гоных пород. План лекции
- Vs - Объём минеральной части породы (объём скелета), см3.
- Гранулометрический состав обломочных пород
- Водопроницаемость
- , М3 /сутки
- Физические свойства и химический состав подземных вод
- 10.3. Жесткость воды
- 10.5. Агрессивность подземных вод по отношению к бетону и металлам.
- 11.1. Классификация водоносных горизонтов
- 11.2. Воды зоны аэрации
- 12.1. Грунтовые воды
- 11.4. Артезианские воды.
- 11.5. Особые типы подземных вод
- Лекция № 12 основы динамики подземных вод
- 12.1. Общие положении о движении подземных вод
- 12.2. Расход естественных потоков подземных вод.
- 12.3. Искусственные дрены
- 12.4. Приток воды к совершенным и несовершенным дренам
- 12.5. Взаимодействующие дрены
- Л е кц и я № 13
- 13.I. Объекты, методы и задачи инженерной геологии
- 13.2. Инженерно-геологическая классификация грунтов
- 13.3. Физико-механические свойства грунтов Физические свойства
- Механические свойства.
- 13.3. Особенности свойств горных пород в массивах.
- Лекция № 14 инженерно-геологические процессы и явления План лекции
- 14.I. Движение грунтовых масс на склонах
- 14.2. Суффозионные явления
- 14.3. Карстовые процессы и явления
- 14.4. Плывуны
- Лекция № 15 инженерно-геологические явления в зонах вечной мерзлоты План лекции
- 15.1. Условия распространения и залегания вечномерзлотных пород.
- 15.2. Подземные воды в криолитозонах
- 15.3. Инженерно-геологические явления в зонах залегания вечномерзлых пород
- 15.4. Инженерно-геологические условия строительства в криолитозонах
- Лекция № 16 гидрогеологические изыскания для проектов водозаборов подземных вод План лекции
- 16.I. Поиски и разведка подземных вод для целей водоснабжения
- 16.2. Инженерно-геологическая и гидрогеологическая съемка.
- 16.4. Стационарные наблюдения
- 16.5. Состав и содержание отчета по гидрогеологическим изысканиям.
- 17.1. Основные цели и задачи инженерно-геологических изысканий
- 17.2. Состав и объем инженерно-геологических исследований
- 17.3. Инженерно-геологические исследования на различных стадиях проектирования
- 17.4. Инженерно-геологические изыскания для объектов трубопроводов
- 17.5. Изыскания месторождений естественных строительных материалов
- Учебно-методические материалы
- 1. Основная литература.
- 2. Дополнительная литература и пособия.