4.4. Исследование динамики плейстоценовых оледенений
Гляциодинамическая структура и ее изменения в процессе деградации оледенений отразились на земной поверхности в размещении комплексов форм и типов ледниковой скульптуры. Это позволяет фиксировать проявления гляциодинамики на МДC путем анализа ландшафтных индикаторов, дешифровочных признаков и геолого-геоморфологических данных.
Гляциодинамические реконструкции области древнемагерикового оледенения по комплексу дистанционных и геолого-геоморфоло-гических данных позволили раскрыть региональные закономерности в размещении краевых ледниковых комплексов, гляциодислокации, в локализации проявлении гляциоизостазии и криогенных процессов, а также установить роль неотектоники в развитии ледниковых покровов и гляциоморфогенезе. Среди гляциодинамических структур, выявленных дистанционными методами, наиболее отчетливое выражение в ландшафтных индикаторах и на МДС получили гляциодислокации складчато-чешуйчатого типа. Они представляют собой закономерно построенные комплексы, сформированные под воздействием вертикальной и горизонтальной составляющих движущегося льда. Такие структуры слагают большинство возвышенностей Беларуси и морфологически лучше всего выражены в краевой ледниковой зоне. На земной поверхности подобные гляциодислокации обнаруживаются в виде дугообразных форм рельефа различных размеров, что позволяет надежно фиксировать их по параллельно-полосчатому рисунку аэрокосмического фотоизображения. Благодаря многоступенчатой генерализации МДС достигается возможность дистанционного изучения складчато-чешуйчатых сооружений различных уровней.
Элементарные комплексы напорных образований, сформированные в результате экзарационно-аккумулятивной деятельности одного ледникового языка, представляют собой скибовые сооружения. Они образованы системами складок и чешуи (скиб), сопряженных по надвиговым плоскостям Скибовые сооружения обычно проявпяются на земной поверхности в форме параллельно-грядового рельефа Гряды вытянуты по простиранию на расстояние от нескольких сотен метров до 1–3 км. Их ширина около 100–350 м, высота до 10–15 м. Склоны гряд более пологие (до 10–20 град) во внутренней (проксимальнои) части и на 3–5 град круче с дистальной стороны. Такие формы как бы нанизаны на осевые ледниковые ложбины, которые имеют длину от первых сотен метров до 30–50 км и ширину от нескольких десятков метров до 5–8 км. С дистальной стороны напорные образования примыкают к поперечным ледниковым ложбинам Расположенные здесь озера имеют вытянутую форму в плане и характеризуются значительными глубинами (оз. Долгое–53.6 м, оз. Плисса–32.9 м, оз. Сенно–315 м). Котловины таких водоемов парагенетически связаны с соседними положительными формами рельефа и представляют собой ложбины ледникового выдавливания Ориентировка переуглублений гляциогенного генезиса соответствует направлению движения ледяных масс (рис. 18).
Отличительной чертой напорных образований на МДС являются их приуроченность к системам ледниковых ложбин и дугообразная форма в плане. Внутренняя структура конечноморенных гряд прослеживается на АФС благодаря проявлению в ландшафте торцовых частей погружающихся скиб-чешуй и гребней скиб-складок. При индикации скибовых нарушений в условиях занесенных территорий важны выявление аномальных по производительности древостоев и учет обилия ксерофнльных видов и видовой насыщенности в напочвенном покрове. С площадями распространения конечноморенных скиб обычно совпадают поля развития отторженцев. Их дешифрирование возможно в том случае, если пластины перемещенных образований выступают над кровлей моренного горизонта и выходят на земную поверхность. По периферии напорных образований на АФС удается различить крупные валуны, ориентировка длинной оси которых обычно совпадает с направлением движения ледникового языка, подчеркивая напорный характер его внешних дуг.
На МДС диагностируются инъективные формы, или гляциодиапиры, образованные разного рода внедрениями материала одних слоев ледникового субстрата в пространство других. Уверенно дешифрируются крупные диапиры, получившие прямое отображение в рельефе. Обычно они выражены в виде холмов, гряд и других возвышений относительной высотой до 30–80 м и протяженностью до нескольких километров.
Элементарные комплексы краевых образований выстраиваются в виде дуг шириной 1–5 км и протяженностью от нескольких до 60–80 км. Такие системы конем номоренных гряд устанавливаются на КС локального уровня генерализации. В осевых частях и на крыльях дуг нередко наблюдаются разрывы, разбивая такие сооружения на отдельные сегменты. Дешифрируемые на КС дуговидные цепи конечных морен образуют языковые комплексы шириной внешних дут около 15–30 км. В свою очередь сближенные гирлянды формируют более массивные краевые пояса (Ошмянско-Минский, Гродненско-Новогрудский и др.), различимые в основном на региональных КС.
Если краевые ледниковые комплексы, получившие прямое отражение в рельефе современной поверхности, дешифрируются в той или иной степени однозначно, то обнаружение по МДС проявлений гляциоизостазии, вызванных нагрузкой значительных масс льда, сопряжено со значительными трудностями. По данным Э.А. Левкова и А.К. Карабанова, современное гляциоизостатическое воздымание зем-ной поверхности, до сих пор сказывающееся в Фенноскандии и узкой зоне ее сочленения с Русской плитой, однако на территории Беларуси не проявляется даже в Поозерье, покрывавшемся льдом всего несколько десятков тысяч лет назад. Поэтому оценка подобных явлений в этом регионе на основе дешифрирования МДС информативна в том случае, если гляциоизостатические движения отражены в геолого-геоморфологических особенностях. Причем геоиндикаторы наиболее достоверны в области последнего поозерского оледенения и в перигляциальной зоне непосредственно у края ледника.
В периферической полосе последнего оледенения ландшафтные признаки гляциоизостазии обнаруживаются в пределах локальных неотектонических структур. В плейстоцене последние отличались повышенной активностью, в значительной мере обусловленной гляциоизостатическим фактором. Дешифровочными критериями рассматриваемых гляциодеформаций служат разрывы рек на потоки, текущие в противоположных направлениях, изменения в ориентировке водотоков, подпруживание рек и образование озер. Инверсия речного стока отчетливо диагностируется на МДС в полосе предельного распространения поозерского ледника. Здесь многие реки, принадлежащие бассейнам Днепра и Западной Двины, имеют уплощенные водо-разделы с относительным превышением около 10–20 м, а сама водораздельная линия в общем близка границе оледенения. Сходные аномалии в строении гидросети дешифрируются на участках Черноморско-Балтийского водораздела.
О характере гляциоизостазии можно судить на основе геоиндикационного изучения морфологии озерно-ледниковых и речных террас. Дешифрирование особенностей строения террасовых уровней Полоцкой озерно-ледниковой низины позволило установить заметный региональный перекос этой территории, образовавшийся после снятия нагрузки периферической части поозерского ледника. Судя по амплитуде высот верхних террасовых поверхностей, гляциоизостатическое поднятие составило около 20 м. В пользу воздымания территории, оставленной последним ледниковым покровом, говорит также тот факт, что в Белорусском Поозерье в долинах крупнейших рек (Западная Двина, Неман, Вилия) верхние голоненовые террасы приподняты до 6–10 м, тогда как на запредельной площади (примерно в 100 км южнее) одновозрастная им высокая пойма только иногда достигает 3–4 м.
Реликтовые криогенные структуры, образованные мерзлотными процессами, широко развиты в условиях Беларуси к югу от границы иоозерского оледенения. В ходе дистанционных исследований предельных краевых образований последнего ледника южнее Лепеля, Новолукомля и Ушач Витебской области выявлены площади распространения полигонально-блочного рельефа и установлены соотношения этих структур с ледниковыми комплексами. Криогенный микрорельеф, формирующий ячеисто-мозаичный рисунок аэрокосмоизображения, представлен 4–6-угольными полигонами с размерами сторон от 30–40 до 150–200 м. Среди типичных форм криогенного генезиса в пределах лимногляциальных равнин по МДС впервые обнаружены реликтовые пинго (гидролакколиты). Высота таких форм колеблется от 3 до 70 м, а их диаметр в большинстве случаев–от 30 до 800 м. Данные дешифрирования свидетельствуют о том, что пинго образуют непрерывную полосу по периферии поозерского ледникового покрова. На КС криогенные формы выглядят в виде систем кольцевых структур общей протяженностью от 1.5 до 7–8 км, составленных из наложенных друг на друга либо слившихся пинго и термокарстовых просадок. В каждой из этих групп присутствует крупная кольцевая форма размерами в поперечнике от 0.3 до 3 км с заболоченной низиной или озером в центре.
В качестве эталона для дешифрирования реликтовых пинго может быть приведен наиболее крупный из них–Боровненский кольцевой объект, расположенный в Белорусском Поозерье на западе Лучесинского лимногляциального бассейна. Морфологически пинго представляет собой узкий (0.1–0.6) кольцевой вал (гряду), окаймляющий оз. Боровно, с размерами по длинной оси 2.6 км, по короткой–1.8 км. Гряда сложена лимногляциальными песками с тонкими ритмически повторяющимися прослоями супесей и суглинком. Образование пинго происходило во время последнего позднеледниковья под воздействием криостатического давления в условиях промерзания неглубоких (средняя глубина 5–8 м) озерных водоемов.
Заметное воздействие на распределение плейстоценовых ледниковых покровов и интенсивность гляциоморфогенеза оказали новейшие тектонические процессы. В Белорусском регионе установлены пространственные соотношения активных в плейстоцене структур платформенного чехла и фундамента с особенностями древне-ледниковой морфоскульптуры, что позволяет определить роль неотектоники в динамике покровных оледенений.
Ведущую роль в накоплении мощных моренных толщ и образовании основных макроформ Белорусской гряды сыграло высокое положение кристаллического фундамента (абс. отм. от 50 до 500 м). Ледниковая аккумуляция усиливалась, как указывает А. В. Матвеев, также в районах Беларуси с устойчивым тектоническим прогибанием. Давление от нагрузки ледяных масс создавало в недрах обширное поле напряжений. При незначительной мощности платформенного чехла ледниковый покров способствовал активизации движений блоков консолидированного фундамента, приводящих к интенсивному расчленению доплейстоценового рельефа и, как следствие, высокой степени воздействия ледника на ложе.
При аэрокосмическом изучении влияния неотектоники на динамику плейстоценовых оледенений обращается внимание на пространственное соотношение ледниковых комплексов с кольцевыми и линейными структурами. Подобные структурные формы являются показателями тектонической делимости и гетерогенной неоднородности земной коры, а их проявление в ландшафтах области древнематерикового оледенения в большинстве случаев носит опосредованный характер .
Структурные элементы контролируют также развитие современных ледниковых покровов. Это наглядно подтверждено В.М. Будько путем анализа КС Западной Антарктиды. Здесь в структуре ледяных масс находят отражение разломы, кольцевые структуры и блоки земной коры (рис. 19).
Среди разнообразных генетических типов кольцевых образований для выяснения гляциодинамики анализируются тектоногенные структуры диаметром до 50 км. Последние во многих случаях отражают контуры погребенных мелких выступов, либо депрессий фундамента, локальные тектонические структуры (положительные и отрицательные) чехла, изометричные формы рельефа ложа антропогенового покрова, а также кольцевые дизъюнктивы.
На территории Беларуси участки земной поверхности, испытавшие неотектоническое воздымание амплитудой от нескольких десятков до 150–170 м, сопряжены с проявлением в современном рельефе в основном положительных тектонических кольцевых структур. Отмечается связь таких кольцевых объектов с ледораздельными зонами, контролировавшими движение ледниковых потоков в дистальном направлении. Межпотоковые ледоразделы тяготеют к положительным тектоническим структурам диаметром 25–30 км: Новогрудской, Гродненской, Минской и др., связанным с поднятием поверхности фундамента и плейстоценового рельефа. Обычно к ним приурочены конечноморенные комплексы, образованные мощными дислоцированными толщами. С группой кольцевых структур диаметром 15–25 км связано размещение межлопастных ледораздельных зон, отличающихся повышенной мощностью морен ранних этапов оледенений. Дешифрируемые межъязыковые ледоразделы сопряжены с кольцевыми структурами с размерами в поперечнике до 15 км и представляют собой радиальные конечноморенные комплексы локализующиеся в пределах моренного цоколя.
Среди большой группы кольцевых структур, контролирующих формирование ледораздельных зон, устойчивыми положительными движениями на протяжении всего плейстоцена характеризовались изометричные объекты тектоногенного типа диаметром порядка 25–30 км. На таких участках земной поверхности происходило торможение или полная остановка ледяных масс, что способствовало накоплению мощных ледниковых толщ и образованию значительно расчлененного рельефа.
Существенное воздействие на развитие ледниковых покровов оказали активные на неотектоническом этапе разломы, в том числе системы линейных дислокаций ротационно-планетарной природы.
В плейстоцене зоны активных разломов отличались разуплотнением и высокой трещиноватостью доплейстоценовых пород. Вследствие избирательной гляциальной экзарации в пределах таких участков земной коры формировались ложбины ледникового выпахивания и размыва. По данным дешифрирования КС устанавливается взаимосвязь ряда разломов с ориентировкой ледниковых ложбин. Гляциодинамика усиливалась в местах проявления системы линейных дислокаций с азимутами простираний 17,287 и 62,332 град.
Высокой информативностью отличаются МДС при реконструкции динамической структуры последнего (поозерского) ледникового покрова, проникавшего на территорию севера Беларуси 17–20 тыс. лет назад. На основе комплексной интерпретации результатов дешифрирования и геолого-геоморфологических материалов удалось выяснить региональные черты распределения главнейших гляциодинамических комплексов, их пространственное соотношение с неотектоническими структурами и элементами ротационной геодинамики (рис. 20).
Установленная на КС полоса франтальных ледниковых комплексов в основном совпадает с проведенной ранее границей максимального распространения поозерского ледника. Наибольшие отклонения от этой границы составляют 15–25 км (правобережье Вилии в раоне Вилейки и Сморгони, а также территория между Лиозно и Смоленском).
Краевые ледниковые комплексы в плане образуют три крупных различимых на КС дуговидных выступа шириной до 100 км и протяженностью порядка 150–170 км. Их формирование связано с развитием дисненской, полоцкой и витебской ледниковых лопастей. Причем дисненская и витебская лопасти отличаются правильными дугообразными очертаниями, а внешний край полоцкой лопасти состоит из серии мелких выступов шириной 25–30 км и протяженностью 40–50 км. Последние представляют собой краевые образования леднико-вых языков: ушачского, лепельского и селявского.
По КС удалось выявить угловые несогласия в плановом расположении краевых ледниковых комплексов, что позволяет предположить разновременность их формирования в ходе активного развития поозерского ледника. Резкие несогласия, или «срезания», зафиксированы в районе Швенчениса (Литва), западнее и восточнее оз. Освейского, севернее оз. Свино и к востоку от Невеля. Такой характер пространственного соотношения краевых форм свидетельствует о нескольких значительных этапах в развитии ледникового покрова, соответствующих трем-четырем стадиям или фазам наступания ледника и сопровождающихся существенной перестройкой структуры и динамики поозерского очеденения. Данные дешифрирования пространственного распределения конечных морен подтверждают вывод о том, что динамика ледниковых лопастей и отдельных языков была в значительной степени автономной.
По МДС выявляются закономерности внутреннего строения лопастных и языковых комплексов ледниковых образований, подчеркивающих гляциодинамическую структуру поозерского оледенения. Маргинальные элементы этих форм, как правило, располагаются согласно относительно друг друга и субпараллельно главным фронтальным полосам краевых комплексов.
Существенное влияние на структуру и динамику последнего ледникового покрова в Беларуси оказали переуглубления доплейстоценового рельефа, дешифрируемые на КС в виде протяженных (150–200 км) линеаментов и оперяющих их звеньев длиной 5–25, реже 45–50 км. На таких участках земной поверхности усиливалась экзарация и формировались ложбины ледникового выпахивания и размыва шириной 5–15 км. Подобные формы контролировали развитие лопастных и языковых комплексов рельефа поозерского ледника (рис. 18, 20).
На основе космогляциодинамических построений возможно установить взаимосвязи между структурой последнего ледникового покрова и проявлениями эндогенного и ротационного режимов земной коры в позднеплейстоценовое время. Например, кольцевые структурные формы, испытавшие положительные неотектонические движения, служили ледораздельными зонами различных рангов. Между дисненской и полоцкой ледниковыми лопастями располагается Ветринская структура с поперечником 25 км. Она сопряжена с локальным поднятием поверхности ложа плейстоценовых пород, кровли днепровской и сожскои морен и выражена в современном рельефе как одно-именное поднятие–угловой массив, сложенный напорными ко-нечноморенными образованиями. Сходные размеры и особенности геодинамического режима имеет кольцевая структура на стыке полоцкой и витебской лопастей. К ледоразделам ушачского, лепельского и селявского языковых комплексов приурочены изометричные объекты диаметром до 15 км.
Активные на геотектоническом этапе разрывные нарушения контролировали движение поозерского ледника в дистальном направлении. Под воздействием ледяных масс над ослабленными участками земной коры происходила интенсивная экзарация. Зона Чашникского регионального разлома, отличающаяся повышенной трещиновато-стью пород платформенного чехла, определяла магистральное направление полоцкой ледниковой лопасти. Развитие краевых комплексов в зоне максимального распространения поозерского ледника контролировалось тектонодинамическими процессами на участках новейшей активизации Ошмянского и Выжевско-Минского разломов, Борисовской кольцевой структуры (рис. 20).
Планетарные системы линейных дислокаций с азимутами 17, 287 град определили развитие дисненской и полоцкой ледниковых лопастей. На динамику витебской лопасти оказали влияние линеаменты направлений 62, 332 град. С этими системами связаны направления главнейших ледниковых языков.
- В.Н. Губин
- Введение в дистанционное зондирование земли
- Основные понятия, терминология
- 1.2. Развитие аэрокосмогеологических исследований.
- Методы дистанционного изучения литосферы
- Физические основы и техника аэрокосмических съемок
- 2.2. Фотографические методы
- 2.3. Оптико-электронные методы
- 2.4. Визуально-инструментальные наблюдения
- 3. Геологическое дешифрирование материалов дистанционного зондирования
- 3.1. Принципы дешифрирования аэрокосмических снимков
- 3.2. Визуальное геологическое дешифрирование
- Дешифровочные признаки основных литолого-генетических типов четвертичных отложений на космических снимках локального уровня генерализации (для условий Беларуси)
- 3.3. Автоматизированное геологическое дешифрирование
- Отражение морфолитосистем на цифровой модели космического изображения, полученного с исз «Ресурс-01»
- 3.4. Технологическая схема дешифровочного процесса
- 4. Применение дистанционных методов в геологических исследованиях
- 4.1. Геоинформативность аэрокосмичеких снимков
- 4.2. Анализ линеаментной тектоники
- 4.3. Изучение кольцевых структур литосферы
- 4.4. Исследование динамики плейстоценовых оледенений
- 5. Использование материалов дистанционного зондирования при прогнозе и поисках полезных ископаемых
- 6. Дистанционные методы в эколого-геологическом картографировании
- 7. Проблемы космической планетологии
- Литература
- Содержание