Формы залегания воды в породах.
В горных породах вода находится в субкапиллярных, капиллярных и сверхкапиллярных пустотах. В зависимости от размера пустот она находится в различных формах (рис. 6 ).
В Рис. 6. Воды в породах (по А.А.Карцеву): 1-минеральные частицы пород; 2- минералы с включениями воды; вода: 3-адсорбированная; 4-литосорбированная; 5-капиллярная; 6-стыковая (пендулярная); 7- сорбционно-замкнутая; 8-свободная гравитационная; 9-парообразование в свободной воде
В капиллярных пустотах находится капиллярная вода. При сплошном заполнении пор она может передавать гидростатическое давление, при частичном заполнении подчиняется лишь менисковым силам. В сверхкапиллярных пустотах в капельно-жидком состоянии находится свободная гравитационная вода. Эта вода свободно передвигается под действием гравитационных сил и передает гидростатическое давление. Именно она замещается нефтью и газом при формировании залежей. Субкапиллярная часть капиллярной воды и вода, оставшаяся в сверхкапиллярных пустотах после образования залежей нефти или газа, составляют остаточную воду нефтегазонасыщенных пород.
Подземные воды попадают в горные породы как в процессе осадконакопления (седиментационные воды), так и в результате последующего проникновения их в формирующиеся или уже сформировавшиеся горные породы (инфильтрационные и элизионные воды).
Инфильтрационные воды попадают в фильтрационные водонапорные системы за счет поступления атмосферных осадков, речных, озерных и морских вод. Проникая в пласты-коллекторы, они движутся от зоны питания к зоне разгрузки.
Элизионные воды — это воды, попадающие в водоносные или нефтеносные пласты (горизонты) в элизионных водонапорных системах вследствие выжимания поровых вод из уплотняющихся осадков и пород-неколлекторов при увеличивающейся в процессе осадконакопления геостатической нагрузке (см. главу VII).
При инфильтрационных и элизионных процессах вследствие смешения вод, а также выщелачивания горных пород состав воды и по площади отдельного пласта, и по разрезу месторождения меняется.
Виды вод нефтяных и газовых месторождений. С позиций промысловой геологии воды нефтяных и газовых месторождений делятся на собственные, чуждые и техногенные (искусственно введенные в пласт).
К собственным относятся остаточные и пластовые напорные воды, залегающие в нефтегазоносном пласте (горизонте).
Собственные пластовые воды — один из основных природных видов вод месторождений УВ. Они подразделяются на контурные (краевые), подошвенные и промежуточные.
Контурными называются воды, залегающие за внешним контуром нефтеносности залежи.
Подошвенной называется вода, залегающая под ВНК (ГВК).
К промежуточным относятся воды водоносных пропластков, иногда залегающих внутри нефтегазоносных пластов.
К чужим (посторонним) относятся воды верхние и нижние, грунтовые, тектонические.
Верхними называются воды водоносных горизонтов (пластов), залегающих выше данного нефтегазоносного, а нижними — воды всех горизонтов (пластов), залегающих ниже его.
К грунтовой относится гравитационная вода первого от поверхности земли постоянного горизонта (расположенного на первом водоупорном слое), имеющая свободную поверхность.
Тектоническими называют воды, циркулирующие в зонах нефтегазоносности по дизъюнктивным нарушениям. Эти воды могут проникать в нефтегазоносные пласты и вызывать обводнение скважин при разработке залежей.
Искусственно введенными, или техногенными, называют воды, закачанные в пласт для поддержания пластового давления, а также попавшие при бурении скважин (фильтрат промывочной жидкости) или при ремонтных работах.
Основную массу природных вод нефтяных и газовых месторождений составляют более или менее минерализованные воды.
Состав и свойства пластовых вод имеют большое значение для разработки залежей нефти и газа и их добычи, так как от них зависит течение многих процессов в дренируемом пласте. Поэтому их значение позволяет намечать более эффективные мероприятия по контролю и регулированию разработки и эксплуатации скважин и промысловых систем. Все это заставляет уделять большое внимание вопросам состава и физических свойств подземных вод.
Химическая классификация подземных вод. Под химическим составом воды понимают состав растворенных в ней химических веществ. Существует ряд химических классификаций подземных вод (С.А. Щукарева, О.А. Алекина, Ч.Пальмера, В.И. Вернадского и др.). Среди нефтяников общее признание получила классификация В.А. Сулина. Она основана на генетическом принципе, согласно которому формирование химического состава вод происходит в определенных природных условиях (континентальных, морских, глубинных) и вследствие процессов взаимодействия вод с породами или вод различного генезиса между собой. При этом происходит их обогащение специфическими компонентами.
В основу классификации положены три основных коэффициента, в %-экв/л: rNa/rCI, (rNa - rCl)/rSO4, (rCL - rNa)/rMg. Буква перед химическим символом иона означает, что содержание данного иона выражено в эквивалентной форме.
Пользуясь этими коэффициентами, выделяют четыре генетических типа вод (табл. 2).
Таблица 2 | ||||
Классификация подземных вод по В.А. Сулину | ||||
Тип вод | rNa/rCl | rNa-rCl | rCl - rNa | |
rSO4 | rMg | |||
I | сульфатно-натриевый | >1 | <1 | - |
II | гидрокарбонатно-натриевый | >1 | >1 | - |
III | хлоридно-кальциевый | <1 | - | >1 |
IV | хлоридно-магниевый | <1 | - | <1 |
При небольших отклонениях коэффициентов от единицы, т.е. в зонах перехода от одного типа к другому, воды следует относить к переходным типам.
Каждый тип вод по преобладающему аниону делится на три группы — хлоридную, сульфатную и гидрокарбонатную. По преобладающему катиону группы делятся на подгруппы — натриевую, магниевую и кальциевую. Подгруппу следует выделять лишь в том случае, если преобладающий катион соединяется с преобладающим анионом, а не с другими.
Физические свойства пластовых вод. Минерализацией воды называется суммарное содержание в воде растворенных солей, ионов и коллоидов, выражаемое в г/100 или в г/л раствора. Минерализация вод нефтяных и газовых месторождений меняется в очень широких пределах — от менее 1г/л (пресные воды) до 400 г/л и более (крепкие рассолы). Она определяется наличием шести главных ионов (С1- , SO42- , НСО3-, Na+, Са2+, Мg2+).
Значительно распространены в водах также карбонат-ион (СО32- ), ионы калия (К+) и железа (Fe2+ и Fe3+). Остальные элементы встречаются в ничтожных количествах (микрокомпоненты).
Минерализация и химический состав вод определяют их физические свойства (плотность, вязкость, поверхностное натяжение, электропроводность и др.).
Для нефтегазопромысловой геологии существенно то, что минерализованные воды имеют повышенную отмывающую способность нефтяных пластов-коллекторов. Их использование при заводнении залежей способствует повышению коэффициента вытеснения нефти, а следовательно, и конечного коэффициента извлечения нефти. В то же время высокая минерализация пластовых вод в определенных условиях может приводить к выпадению солей на забое добывающих скважин и в прискважинной зоне пласта, что ухудшает условия эксплуатации пласта в районе таких скважин.
Газосодержание пластовой воды не превышает 1,5— 2,0м3/м3, обычно оно равно 0,2—0,5м3/м3. В составе водорастворенного газа преобладает метан, затем следует азот, углекислый газ, гомологи метана, гелий и аргон.
Растворимость газов в воде значительно ниже их растворимости в нефти. При увеличении минерализации воды их растворимость уменьшается.
Сжимаемость воды — обратимое изменение объема воды, находящейся в пластовых условиях, при изменении давления. Значение коэффициента сжимаемости колеблется в пределах (35)10-4МПа-1. Сжимаемость воды, содержащей растворенный газ, увеличивается; сжимаемость минерализованной воды уменьшается с увеличением концентрации солей. Это свойство играет существенную роль при формировании режимов залежей.
Объемный коэффициент пластовой воды нефтяных и газовых месторождений b зависит от минерализации, химического состава, газосодержания, пластовых давления и температуры и колеблется от 0,8 до 1,2. Наиболее влияют на его величину пластовая температура и минерализация.
Плотность пластовой воды зависит главным образом от ее минерализации, пластовых давления и температуры. В большинстве случаев она меньше плотности в поверхностных условиях (не более чем на 20%), поскольку пластовая температура выше стандартной. Однако в условиях пониженных пластовых температур, например, в зоне развития многолетнемерзлых пород, плотность воды может быть равной плотности воды в поверхностных условиях или даже больше ее.
Вязкость пластовой воды зависит в первую очередь, от температуры, а также от минерализации и химического состава. Газосодержание и давление оказывают меньшее влияние. В большинстве случаев вязкость пластовых вод нефтяных и газовых месторождений составляет 0,2— 1,5 мПас.
Поверхностное натяжение пластовой воды, т.е. свойство ее противодействовать нормальным силам, приложенным к ее поверхности и стремящимся изменить ее форму, в значительной степени зависит от химического состава и при соответствующей химической обработке воды может быть значительно снижено. Это имеет существенное значение для разработки нефтяных залежей с заводнением — уменьшение поверхностного натяжения повышает ее вымывающую способность, что способствует увеличению коэффициента вытеснения нефти водой.
Электропроводность воды зависит от ее минерализации. Пресные воды плохо проводят или почти не проводят электрический ток. Минерализованные воды относятся к хорошим проводникам. Мерой электропроводности служит удельное электрическое сопротивление, за единицу измерения которого принят 1 Омм. Знание удельного сопротивления подземных вод необходимо для интерпретации материалов электрометрии скважин.
Все рассмотренные физические свойства подземных вод наиболее надежно определяются по глубинным пробам, отбор которых осуществляется специальными глубинными герметичными пробоотборниками. При отсутствии таких определений эти свойства могут быть с меньшей точностью установлены по специальным графикам, приведенным в монографиях по физике пласта или в справочниках.
Техногенные воды по своим свойствам обычно отличаются по минерализации от пластовых. Они менее минерализованы. Исходя из экологических соображений, там, где это возможно, для нагнетания в пласт используют воду, попутно добываемую вместе с нефтью, в полном ее виде или в смеси с поверхностной водой. В результате в состав попутной воды могут входить пластовая и ранее закачанная вода.
- Введение
- Нефтегазопромысловая геология как наука и её задачи
- Определение нефтегазопромысловой геологии
- Связь нефтегазопромысловои геологии с другими геологическими и смежными науками
- Цели и задачи нефтегазопромысловой геологии
- Методы получения промыслово-геологической информации
- Средства получения информации
- Методы комплексного анализа и обобщения исходной информации
- Залежи углеводородов в природном состоянии
- Коллекторы нефти и газа
- Пористость и строение порового пространства.
- Проницаемость коллекторов
- Свойства пластовых флюидов
- Физическое состояние нефти и газа при различных условиях в залежи
- Пластовые нефти Классификация нефтей.
- Физические свойства нефтей.
- Пластовые газы, конденсаты, газогидраты Пластовые газы
- Газоконденсат
- Газогидраты
- Пластовые воды нефтяных и газовых месторождений
- Формы залегания воды в породах.
- Энергетическая характеристика залежей нефти и газа
- Начальное пластовое давление
- Залежи с начальным пластовым давлением, соответствующим гидростатическому.
- Залежи с начальным пластовым давлением, отличающимся от гидростатического.
- Роль начального пластового давления.
- Температура пласта
- Природные режимы залежей нефти и газа
- Нефтяные залежи. Водонапорный режим
- Упруговодонапорный режим.
- Газонапорный режим.
- Геологическое обоснование методов и систем разработки нефтяных и газовых залежей
- Системы разработки; геологические данные для их проектирования
- 2) О необходимости применения метода искусственного воздействия на залежь или целесообразности разработки объекта с использованием природной энергии;
- Системы разработки нефтяных и газонефтяных залежей при естественных режимах и геологические условия их применения
- Система разработки с использованием напора подошвенных вод.
- Система разработки с использованием энергии выделяющегося из нефти газа.
- Система разработки с совместным использованием напора пластовых вод и газа газовой шапки.
- Система с использованием напора пластовых вод при неподвижном гнк.
- Нетрадиционные методы разработки нефтяных залежей и геологические условия их применения
- Вытеснение нефти водными растворами полимеров.
- Особенности разработки газовых и газоконденсатных залежей и влияние на нее геологических условии
- Основные технологические решения при разработке нефтяных месторождений с заводнением и их геологическое обоснование
- Выделение эксплуатационных объектов
- Г Рис. 15 Разновидности метода заводненияЕологическое обоснование выбора вида заводнения
- Законтурное заводнение.
- Приконтурное заводнение.
- Внутриконтурное заводнение.
- Разрезанием эксплуатационного объекта на площади
- Блоковое заводнение.
- Сводовое заводнение.
- Кольцевое разрезание.
- Площадное заводнение
- Сетка скважин нефтяного эксплуатационного объекта
- Градиент давления в эксплуатационном объекте
- Фонд скважин при разработке месторождения Фонд скважин различного назначения
- Скважины с разной очередностью бурения
- Учет изменений фонда скважин
- Динамика добычи нефти, газа, попутной воды из эксплуатационных объектов при вытеснении нефти водой
- Добыча нефти.
- Добыча газа
- Геолого-промысловый контроль за добычей нефти, газа, обводненностью продукции, закачкой воды
- Контроль за дебитами и приемистостью скважин, обводненностью продукции, газовым фактором.
- Учет показателей работы скважин. Документация.
- Геолого-промысловая документация по объектам разработки в целом.
- Контроль пластового давления и температуры Пластовое и забойное давление при разработке залежей
- Карты изобар
- Перепады давления в пласте при добыче нефти и газа. Комплексные показатели фильтрационной характеристики пластов
- 1. Коэффициент гидропроводности
- 2. Коэффициент проводимости
- 3. Коэффициент пьезопроводности