14. Теплофизические свойства горных пород.
Тепловое состояние земных недр является первопричиной многих геологических процессов.
Теплофизические параметры определяются следующими формулам:
теплопроводность l = q/grad T,
где q – плотность теплового потока; grad T – температурный градиент;
удельная теплоёмкость c = Q/m(T2 – T1),
где Q – количество теплоты; m – масса тела; Т – Т – разность температур, на которую изменяется температура тела массой m при подведении к нему количества теплоты Q;
температуропроводность a =l /cs,
где cs - объёмная теплоёмкость [Дж/(м3*К)].
Параметром теплового поля земли, который можно непосредственно измерить, является плотность теплового потока q = Q/St,
где S – площадь изотермической поверхности ; t – время.
В геологических исследованиях плотность теплового потока Земли находится из уравнения Фурье: q = -l grad T,
Коэффициенты теплового линейного и объёмного расширения определяются соответственно формулами
a = (LT – L0)/L0;
b = (VT – V0)/V0,
где LТ и L0 – длина тела соответственно при температуре T и 00; VТ и V0 – объём тела соответственно при температуре T и 00.
Метаморфические породы (скарны, кварциты, гнейсы, мраморы, роговики и др.) имеют высокую теплопроводность (для скарнов lср =2,31 Вт/(м×К)), что связано с наличием у этих образований плотных кристаллических структур с низкой пористостью и широким развитием метаморфических минералов (андалузита, ставролита). Диапазон изменения теплопроводности метаморфических пород значителен - 0,55-76 Вт/(м×К). Стандартное отклонение теплопроводности метаморфических пород несколько выше, чем осадочных, и более чем в 3 раза превышает таковое для интрузивных пород. В полиминеральных метаморфических образованиях теплопроводность ниже, чем в мономинеральных метаморфических породах, как это видно на примере чарнокитов и гранито-гнейсов (Хср=1,3и 2 Вт/(м×К) соответственно). Продукты контактового метаморфизма отличаются повышенной теплопроводностью. Теплопроводность пород из зон гидротермального метасоматизма близка к теплопроводности продуктов регионального метаморфизма. Метаморфические породы имеют высокую теплоемкость, максимальными значениями ее характеризуются роговики - 1480 Дж/(кг×К). Средняя теплоемкость у метаморфических пород выше, чем у магматических.
Вопрос №15. Давление насыщения. Газовый фактор.
Давление насыщения пластовой нефти (Pнас) - давление, при котором газ начинает выделяться из жидкости. Давление насыщения зависит от соотношения объемов нефти и растворенного газа, от их состава и пластовой температуры. При всех прочих равных условиях с увеличением молекулярной массы нефти (и плотности) давление насыщения увеличивается. С ростом в составе газа количества компонентов, относительно плохо растворимых в нефти, давление насыщения также увеличивается. Особенно высокими давлениями насыщения характеризуются нефти, в которых растворено значительное количество азота. С повышением температуры давление насыщения может значительно увеличиваться.
Для проб нефти, отобранной из одной и той же залежи, давление насыщения часто бывает различным. Это связано с изменением свойств и состава нефти и газа в пределах залежи. Давление насыщения и закономерности выделения газа изучаются в лаборатории по пробам нефти, отобранным с забоя скважин.
Газовый фактор - отношение полученного из месторождения через скважину количества газа (в м3), приведённого к атмосферному давлению и температуре 20°С, к количеству добытой за то же время нефти (в т или м3) при том же давлении и температуре. Газовый фактор зависит от соотношения газа и нефти в пласте, от физических и геологических свойств пласта, от характера и темпа эксплуатации, от давления в пласте и т.д. Газовый фактор является важнейшим показателем расхода пластовой энергии и определения газовых ресурсов нефтяного месторождения.
Различают первоначальный и текущий газовый фактор. Первый характеризует нефтяную залежь в начале разработки, второй - на каждом её этапе. B случае, когда пластовое давление в залежи выше давления насыщения (т. e. нет выделения из нефти растворённого газа), газовый фактор остаётся постоянным и равным первоначальному газосодержанию пластовой нефти. Ha газовый фактор влияет также режим работы залежи.
При водонапорном режиме газовый фактор не меняется в течение всего периода разработки залежи, при газонапорном - в последней стадии разработки быстро возрастает, при режиме газирования жидкости - вначале быстро повышается, затем по мере истощения залежи интенсивно падает. Значения газового фактора могут достигать нескольких тыс. м3 газа на 1 т нефти.
- 1.Происхождение нефти. Залежи и месторождения нефти и газа.
- 2.Состав и свойства нефти
- 3. Состав и свойства природного газа
- 4 Состав и основные свойства пластовых вод
- 5. Классификация нефти по содержанию в них серы, парафина, смол.
- 5. Классификация нефти по содержанию в них серы, парафина, смол.
- 6. Плотность нефти. Измерение плотности нефти.
- 7. Вязкость нефти, её значение, измерение.
- 8. Классификация пород-коллекторов нефти и газа.
- 9. Гранулометрический состав горных пород, способы его определения.
- 10. Пористость горных пород. Виды. Определение пористости.
- 11. Проницаемость горных пород и методы определения. Закон Дарси.
- 12. Плотность горных пород, их виды, значения.
- 13. Механические свойства горных пород.
- 14. Теплофизические свойства горных пород.
- 16. Уравнение состояния газов.
- 17. Физические свойства нефти в пластовых условиях.
- 18. Режимы работы нефтяных и газовых залежей.
- 19 Пластовое давление: определение, формула.
- 20. Приведенное пластовое давление, порядок его определения.
- 21. Плотность и объемный коэффициент нефти, их значение в добычи нефти.
- 22.Состав и основные свойства пластовых вод
- 23. Классификация пластовых вод по мессу залегания и степени минерализации.
- 24. Понятие о пластовом и забойном давлениях, способы их определения.
- 25. Пластовая температура. Оценка величины пластовой температуры.
- 26. Исследование проб пластовой нефти.
- 27. Пластовая энергия и силы, действующие в залежи.
- 28. Состояние углеводородных смесей в зависимости от давления и температуры. Диаграмма фазовых состояний
- 29. Цели и задачи исследований скважин
- 30. Содержание связанной воды в нефтяной залежи.
- 31. Показатели нефтеотдачи пластов: коэффициент нефтеотдачи, коэффициент вытеснения, коэффициент охвата.
- 32. Механизм вытеснения нефти из пласта.
- 33. Водонапорный режим работы залежи, условия применения.
- 33. Водонапорный режим работы залежи, условия применения.
- 35. Режим растворенного газа, условия применения.
- 36. Объект и система разработки месторождений.
- 37. Система и показатели разработки.
- 38. Стадии разработки месторождений
- 39. Особенности разработки газовых и газоконденсатных месторождений.
- 40. Контроль за разработкой месторождений
- 41. Основы проектирования разработки залежей.
- 42. Охрана природы и недр при осуществлении процесса разработки месторождений.
- 43. Цели и задачи исследований скважин и пластов.
- 44. Исследование скважин при установившихся режимах фильтрации
- 45. Исследование скважин на неустановившихся режимах.
- 46. Коэффициент продуктивности скважин.
- 47.Исследования нагнетательных скважин
- 48. Техника, применяемая при исследовании скважин.
- 49. Понятие о методах воздействия на нефтяные пласты.
- 50. Виды заводнения, условия их применения.
- 51. Законтурное заводнение, область применения.
- 52. Внутриконтурное заводнение, область применения.
- 53. Выбор и расположение нагнетальных скважин.
- 54. Источники водоснабжения нагнетательных скважин.
- 55. Блочные кустовые насосные станции (бкнс), принцип работы.
- 57. Требования, предъявляемые к закачиваемой воде
- 58. Классификация методов увеличения нефтеотдачи пластов.
- Критерии эффективного применения методов.
- 59. Гидродинамические методы увеличения нефтеотдачи, условия применения.
- 60. Тепловые методы увеличения нефтеотдачи. Условия приминения.
- Внутрипластовое горение
- 61. Газовые методы вытеснения нефти из пласта
- 62.Физико-химические методы вытеснения остаточной нефти, условия применения.
- 63. Микробиологические методы воздействия на пласт, критерии выбора объекта.