1.5.2.2. Химические и органогенные осадочные породы
Химические осадочные породы образуются путем выпадения из водных растворов химических осадков. К этим породам относятся: различные известняки, известковый туф, доломит, ангидрит, гипс, каменная соль и др. Общей особенностью являются их растворимость в воде и трещиноватость.
Органогенные осадочные породы образуются в результате накопления и преобразования остатков животного мира и растений, отличаются значительной пористостью, растворяются в воде. К органогенным породам относятся: известняк-ракушечник, диатомит и др.
Подавляющее большинство пород этих двух групп имеют смешанное (биохимическое) происхождение.
Группы химических и органогенных пород обычно делятся на подгруппы по составу:
карбонатные,
кремнистые,
железистые,
галоидные,
сернокислые,
фосфатные и др.
Особо выделяются горючие породы, или каустобиолиты.
Карбонатные породы
Известняк – порода, состоящая из минерала кальцита. Он определяется по бурно протекающей реакции с HСl. Цвет белый, желтоватый, серый, черный. Известняки бывают органогенного и химического происхождения.
Органогенные известняки состоят из остатков организмов, которые редко сохраняются полностью, чаще они раздроблены а также изменены последующими процессами. Если известняк состоит из целых раковин, его называют известняк-ракушечник, а если из битых – детритусовый известняк.
Разновидностью органогенного известняка является мел, состоящий главным образом из мельчайших раковин фораминифер, порошковатого кальцита и панцирей простейших микроскопических морских водорослей. Мел – белая землистая порода, широко использующаяся в качестве сырья для портландцемента, побелочного материала и пишущего мела.
Известняки химического происхождения встречаются в виде плотных тонкозернистых масс:
оолитовые известняки – скопления мелких шариков скорлуповатого или радиально-лучистого строения, соединенных известковым цементом;
известковый туф (травертин) – сильнопористая порода, образующаяся в местах выхода на земную поверхность богатых растворенной двууглекислой известью подземных вод, из которых при улетучивании углекислоты или при остывании воды быстро выпадает избыток растворенного углекислого кальция;
Натечные образования кальцита – сталактиты, сталагмиты (рис. 9).
Известняки применяются в качестве строительного материала, удобрения, в цементной промышленности, в металлургии (в качестве флюса).
Доломит CaMg(CO3)2 – состоит из минерала того же названия. Внешне похож на известняк, отличается от него реакцией с соляной кислотой (реагирует в порошке), желтовато-белым, иногда буроватым цветом, большей твердостью (3,4–4). Доломиты образуются в морских бассейнах главным образом как вторичные продукты за счет известняков: растворенный в воде магний взаимодействует и вступает в соединение с кальцитом известняка. Этот процесс, называемый доломитизацией, ведет к полному уничтожению органических остатков. Для доломитов не типична тонкая слоистость; они часто слагают мощные скальные утесы. Доломиты применяются в качестве флюса, огнеупора и для удобрений.
Мергель – известково-глинистая порода, состоящая из кальцита и глинистых частиц (30–50 %). Цвет ее палево-желтый, коричневато-желтый, белый, серый. Внешне мергель мало отличим от известняка; распознается он по характеру реакции с соляной кислотой, от капли которой на поверхности мергеля остается грязно-сырое или обеленное пятно, обусловленное концентрацией на месте реакции глинистых частиц. Образуется мергель в морях и озерах (рис. 10).
Kpeмнистые породы
Они могут быть и химического (кремнистый туф), и органогенного происхождения (кремень, диатомит, опока).
Кремнистый туф (гейзерит) состоит из пористой (реже плотной) массы опала. Цвет породы светлый, иногда пестрый. Образуется туф при выходе на поверхность горячих источников, в воде которых растворен кремнезем.
Кремень – тонкозернистый пятнистый или полосчатый агрегат халцедона, скрытокристаллической разновидности кварца. Образуется из распавшихся скелетных остатков кремневых организмов, то есть из геля кремнезема, который, постепенно теряя воду и уплотняясь, превращается в опал и затем в халцедон. Часто содержит включения органических остатков. Цвет преимущественно серый до черного или бурый, встречается в виде конкреций (желваков) в меловых известняках, никогда не образуя связных пластов. В каменном веке кремень благодаря высокой твердости (равной 7) служил важным материалом для изготовления оружия и орудий труда. В настоящее время используется как шлифовальный и полировальный материал.
Диатомит – пористая, легкая, белая, светло-желтая рыхлая или сцементированная порода, легко растирается в тонкий порошок, жадно поглощает воду. Состоит из мельчайших опаловых скорлупок диатомовых водорослей, скелетов радиолярий и игл губок, встречаются зерна кварца, глауконита, глинистых минералов. Применяется как фильтрующий материал и для получения жидкого стекла. Образуется диатомит из диатомового ила, находящегося на дне озер и морей.
Опока – кремнистая, пористая порода белого, серого, черного цвета, обладающая часто раковистым изломом. Наиболее твердые ее разновидности при ударе раскалываются с характерным звенящим звуком. Она состоит из зернышек опала и незначительной примеси остатков кремневых скелетов организмов, сцементированных кремнистым веществом.
Железистые породы
Среди пород этой подгруппы наиболее распространены сидерит (FeCO3 – железный шпат) и лимонит.
Лимонит – механическая смесь гидроокисла железа с песчаным или глинистым материалом. По внешнему виду это чаще всего бобовые (оолитовые) или натечные массы. Цвет желтый, бурый, накапливается в болотах и озерах, поэтому часто называется болотной или озерной рудой.
Галоидные породы
Из галоидных пород наиболее распространена каменная соль, состоящая из минерала галита (NaCl), в природе она обычно окрашена в серый, рыже-желтоватый или красноватый цвет. Каменная соль обычно залегает слоями, имеет крупнозернистую структуру и блестит на солнце. Треть всей добываемой соли идет в пищу людям и животным, остальная часть используется в промышленности, для технических целей. В месторождении слои каменной соли нередко чередуются со слоями сильвина (KCl).
Сернокислые породы
Наиболее широко распространены гипс и ангидрит. Они образуются при выпадении из водных растворов в мелководных озерах, лагунах засушливых зон, где благодаря интенсивному испарению возникают перенасыщенные растворы.
Галоидные и сернокислые соли залегают обычно в виде пластов среди глинистых пород; последние их предохраняют от растворения подземными водами.
Гипс (CaSO4 ∙ 2H2O) – белого цвета или слегка тонированный; крупнозернистый или волокнистый, с шелковистым блеском. От сходного ангидрита, имеющего твердость 3–4, отличается более низкой твердостью, равной 1,5–2. Широко применяется в строительстве. Путем обжига гипса из него удаляется 75 % кристаллизационной воды, но если к обожженному строительному гипсу добавить воду, то он быстро вновь поглощает ее, восстанавливая свое первоначальное водосодержание, что сопровождается увеличением объема. На этом основывается техническое использование гипса в качестве цемента и вяжущего материала.
Ангидрит (CaSO4) – так называется как сама соляная порода, так и минерал, слагающий ее, похожа на каменную соль, белесовато-серого, желтоватого, голубоватого цвета, но имеет мелкозернистую структуру и не обладает соленым вкусом. Применяется в производстве минеральных удобрений и в строительстве. Ангидритовые слои представляют опасность при строительстве туннелей, так как при поступлении воды они чрезвычайно сильно разбухают и вследствие этого могут сдавить стены туннеля.
Фосфатные породы
К ним относятся многие осадочные породы, обогащенные кальциевыми солями фосфорной кислоты с содержанием Р2О5 до 12–40 % и более. Фосфаты кальция представлены чаще апатитом.
В составе фосфоритов наблюдаются примеси кварца, кальцита, глауконита, остатки радиолярий, диатомей и других органических веществ. Фосфатные породы встречаются в виде конкреций и пластов. Образуются они как хемогенным, так и биогенным путем в морях и на континентах (в озерах, болотах, пещерах). В морях фосфориты возникают при выпадении химического осадка на глубинах от 50 до 150 м. Цвет фосфоритов серый, темно-серый, черный. Применяются как сырье для удобрения (суперфосфат) и получения фосфора.
Каустобиолиты
Это большая группа горючих углеродистых пород органического состава и органогенного происхождения, и потому, согласно строгому определению, не являются настоящими горными породами. Но, с другой стороны, они представляют собой составную часть твердой земной коры и частично бывают изменены в такой степени, что их органическую природу уже невозможно установить, а потому их причисляют к осадочным породам.
Каустобиолиты возникают путем углефикации скоплений растительного материала. Процесс углефикации состоит в постепенном повышении относительного содержания углерода в органическом веществе вследствие его обеднения кислородом (и в меньшей мере водородом). Повышенные давления и температуры, связанные с горообразующими и вулканическими процессами, вызывают диагенетические и метаморфические преобразования углей.
Каустобиолиты бывают твердыми (торф, бурый уголь, каменный уголь, антрацит, графит, горючие сланцы, асфальт, озокерит), жидкими (нефть) и газообразными (горючие газы). Свойства твердых каустобиолитов приведены в табл. 8.
Таблица 8
Свойства твердых каустобиолитов
Каустобиолиты | Цвет | Блеск | Плотность, г/см3 | Теплотворная способность |
Торф | Бурый | Матовый (без блеска) | 1,0 | 1500–2000 кал (6280–8374 Дж) |
Бурый уголь | Буровато-черный | Тусклый | 1,2 | 2000–7000 кал (8374–29 308 Дж) |
Каменный уголь | Черный | Жирный | 1,3 | 7000–8500 кал (29308–35588 Дж) |
Антрацит | Черный | Сильный металловидный | 1,5 | 8500–9000 кал (35588–37681 Дж) |
Графит | Черный | Металлический | 2,2 | Не горит |
Торф состоит из полуразложившихся болотных и древесных растительных остатков, содержащих в своем составе углерод (35–59 %), водород (6 %), кислород (33 %), азот (2,3 %). Торф – рыхлая, буровато-коричневая или черная порода. В зависимости от того, из каких растительных остатков состоит торф, различают сфагновый, осоковый и тростниковый торф. В сыром виде торф содержит до 85–90 % воды, при высушивании его до воздушно-сухого состояния в нем остается еще до 25 % воды. Торф используется для приготовления удобрений и технического воска.
Бурый уголь содержит 67–78 % углерода, 5 % водорода и 17–26 % кислорода. Это плотная темно-бурая или черная масса с землистым изломом, матовым блеском, черта темно-бурая. Твердость 1–1,5; плотность 1,2 г/см3. В составе бурых углей имеются примеси глинистых минералов, обусловливающие их высокую зольность.
Каменный уголь содержит углерода до 82–85 %. Порода черного цвета, плотная, блеск матовый, черта черная. Твердость от 0,5 до 2,5; плотность 1,1–1,8 г/см3.
Антрацит содержит углерода 92–97 %. Это твердая хрупкая порода серовато-черного цвета с сильным полуметаллическим блеском. Излом зернистый, раковистый. Твердость 2,0–2,5; плотность антрацита 1,3–1,7 г/см3. Цвет черты светло-черный. Образуется при высоких давлении и температуре (не ниже 300 °С).
Графит – кристаллический углерод; это высокометаморфизованный уголь, но он может иметь и неорганическое происхождение.
Горючие сланцы – сланцеватые, глинистые или мергелистые породы, в состав которых входит органическое вещество в виде рассеянного сапропеля (гнилостного ила). Горючие сланцы тонкослоисты, обладают темно-серым или бурым цветом; образовались они в процессе накопления отмерших микроводорослей и планктона. Применяются в качестве местного топлива и для получения жидких и газообразных летучих веществ, из которых получают нефтепродукты, газ, серу, олифу, дубильные экстракты, краски, ядохимикаты для защиты растений.
Нефть представляет собой смесь жидких и газообразных углеводородов. На долю других элементов (азота, кислорода, серы и др.) приходится 1–2 %. По внешнему виду это маслянистая жидкость, цвет изменяется от почти белого, желтого до темно-коричневого; соответственно меняется и плотность – от 0,76 до 1,0 г/см3. Лишь асфальтовые нефти имеют несколько большую плотность.
Янтарь (C10H16О) – затвердевшая смола хвойных деревьев, произраставших 25–30 млн. лет назад. Янтарь аморфен. Цвет его белый, желтый, коричневатый. Твердость 2–2,5. Прозрачен или просвечивает. Блеск жирный или матовый. Плотность 1,05–1,1 г/см3, плавится при температуре 300 °С. Горит, выделяя приятный запах. При трении легко электризуется. Встречается в виде глыб среди песчаных пород. Применяется в ювелирной промышленности и в отдельных медицинских препарата.
Основные осадочные породы органического и химического происхождения приведены в табл. 9.
Таблица 9
Основные породы органического и химического происхождения
Название подгрупп | Органогенные породы | Хемогенные породы |
Карбонатные | известняк коралловый, известняк-ракушечник, известняк детритусовый, мел, мергель | известняк плотный, известняк оолитовый, известковый туф, натечный известняк, доломит, сидерит, мергель |
Кремнистые | диатомит, опока | трепел, кремнистые туфы, кремень |
Железистые | – | лимонит |
Галоидные | – | каменная соль |
Сернокислые | – | гипс, ангидрит |
Алюминиевые | – | бокситы |
Фосфатные | – | фосфориты |
Каустобиолиты | торф, ископаемые угли, горючие сланцы, нефть, асфальт, озокерит, янтарь |
|
- Основы геологии
- 1. Геология
- 1.1. Происхождение и форма Земли
- 1.2. Строение Земли
- 1.3. Минеральный и петрографический состав земной коры
- 1.4. Свойства минералов
- 1.4.1. Структура минералов
- 1.4.2. Физические свойства минералов
- 1.4.3. Химический состав
- 1.5. Горные породы
- 1.5.1. Магматические горные породы
- 1.5.1.1. Происхождение и классификация
- 1.5.1.2. Формы залегания магматических пород
- 1.5.2. Осадочные горные породы
- 1.5.2.1. Обломочные осадочные горные породы
- 1.5.2.2. Химические и органогенные осадочные породы
- 1.5.2.3. Формы залегания осадочных горных пород
- 1.5.3. Метаморфические горные породы
- 1.5.4. Условные обозначения горных пород
- 1.6. Геологическая хронология земной коры
- 1.6.1. Возраст горных пород и методы его определения
- 1.6.2. Геохронологическая и стратиграфическая шкалы
- 2. Геоморфология
- 2.1. Морфометрическая классификация рельефа
- 2.2. Генетическая классификация рельефа
- 2.3. Гипсографическая кривая
- 2.4. Изображение рельефа земли
- 2.5. Геологические процессы формирования рельефа
- 2.5.1. Эндогенные процессы формирования рельефа
- 2.5.1.1. Тектонические движения земной коры
- 2.5.1.2. Колебательные движения
- Методы изучения колебательных движений
- Практическое значение колебательных тектонических движений
- 2.5.1.3. Складчатые движения
- 2.5.1.4. Разрывные движения
- 2.5.1.5. Сейсмические явления
- 2.5.1.6. Землетрясения
- Причины землетрясений
- Очаги землетрясений
- Сейсмические волны
- Сила землетрясений
- Последствия землетрясений
- Сопутствующие явления
- Географическое распространение землетрясений
- Сейсмические районы территории России
- Самые катастрофические землетрясения
- 2.5.1.7. Вулканизм
- Типы извержений вулканов
- Последствия вулканической деятельности
- 2.5.2. Экзогенные процессы формирования рельефа
- 2.5.2.1. Выветривание
- 2.5.2.2. Геологическая деятельность ветра
- Эоловая транспортировка
- Эоловые формы рельефа
- 2.5.2.3. Геологическая деятельность ледников
- Движение ледников
- Разрушительная деятельность ледников
- Транспортирующая и аккумулирующая деятельность ледников
- Отложенные морены
- Водно-ледниковые отложения
- 2.5.2.4. Геологическая деятельность поверхностных вод
- Плоскостной склоновый сток
- Деятельность временных русловых потоков
- Деятельность рек
- 2.5.2.5. Геологическая деятельность подземных вод
- Карстовые процессы
- 3. Ландшафтоведение
- 3.1. Понятие о ландшафте
- 3.2. Структура ландшафта
- 3.3. Функционирование ландшафта
- 3.3.1. Влагооборот в ландшафте
- 3.3.2. Биогенный оборот веществ
- 3.3.3. Абиотическая миграция вещества литосферы
- 3.3.4. Энергетика ландшафта и интенсивность функционирования
- 3.4. Изменчивость, устойчивость и динамика ландшафта
- 3.5. Принципы классификации ландшафтов
- 3.6. Функции ландшафта
- 3.7. Охрана ландшафтов
- Библиографический список
- Содержание