Скорость упругих волн и упругие модули химических элементов и минералов
По упругим характеристикам химические элементы весьма неоднородны. В упругой характеристике элементов играют роль их электронная оболочка, которая является упругой средой, и ядра атомов, обладающие различной массой. Данные о скорости распространения продольных упругих волн в элементах были получены экспериментально или рассчитаны по модулям упругости.
Наблюдается корреляция с плотностью и атомными радиусами в пределах периода. Скорость увеличивается в элементах первой половины каждого периода и уменьшается в элементах второй половины каждого периода. Наибольшая зависимость скорости от атомного радиуса установлена у sp-элементов с большим размерами атомов. Зависимость скорости у sp-элементов от атомной массы – незначительна. Для d-элементов скорость в основном определяется атомной массой вещества. Скорость уменьшается при увеличении массы вещества. Это справедливо и для скоростей продольных волн и для скоростей поперечных волн. Поскольку они связаны соотношением .
Упругие модули в элементах изменяются, как и скорости продольны волн, в зависимости от величины атомного радиуса элемента и его атомной массы.
Упругие свойства минералов определяются характеристиками их внутреннего строения. Наиболее информативной характеристикой является плотность упаковки атомов ω в единице объема вещества. Параметр ω обратно пропорционален атомному радиусу. Чем больше плотность упаковки, тем меньше атомный радиус. Значение параметра вычисляется по формуле (Н.З.Евзикова, Ю.В.Казицин, В.А. Рудник):
. (3.15)
Скорость упругих волн увеличивается с ростом плотности упаковки и уменьшается с ростом средней атомной массы, являющейся мерой инерционности вещества.
Скорость продольных волн в минералах изменяется от 2000 до 18000 м/с, поперечных от 1100 до 10000 м/с. Низкие скорости характерны для самородных металлов (золото, платина), высокие – для алюмосиликатных и окисных безжелезистых минералов (топаз, шпинель, корунд), наибольшая скорость упругих волн установлена в алмазе.
Характер изменения скорости упругих волн в элементах, минералах и горных породах имеет два типа связи между скоростью продольных волн и плотностью твердых образований: ; .
К первому типу относятся большинство твердых петрогенных элементов и породообразующие минералы (силикатные и частично окисные), состоящие преимущественно из элементов со структурой типа sp. Скорость упругих волн и плотность этих элементов в значительной степени зависят от плотности упаковки атомов в кристалле и его структуры. Плотность минералов первого типа составляет 0,5-4,5 г/см3, то есть они относятся к минералам с малой и средней плотностью. Скорость продольных волн изменяется от 1км/с до 18 км/с. Для минералов первого типа по мере возрастания плотности минералов наблюдается увеличение скорости упругих волн, то есть прямая зависимость, несмотря на то, что плотность в формуле (3.11) входит в знаменатель. Это как будто противоречит рассматриваемым формулам.
Уравнение связи между σ и vP в образованиях первого типа имеет вид:
, (3.16)
где vp0=6 км/с.
По мере возрастания плотности минералов наблюдается еще большее увеличение модуля Юнга и модуля сдвига. Это возрастание параметров связано, главным образом, с увеличением плотности упаковки атомов ω в кристаллах. Для породообразующих минералов ω изменяется от 72 до 94, а в алмазе достигает 176. В результате происходит увеличение скоростей. Для коэффициента Пуассона закономерных изменений не наблюдаются. Однако в формулы, определяющие скорости продольных и поперечных волн величина коэффициента Пуассона входит таким образом, что даже небольшие его вариации сильно сказываются на значения vP и vS . Наименьшие значения коэффициента Пуассона характерно для кварца (0,05-0,10). Пониженные значения σП свойственны гематиту и пириту ( в среднем 0,15).
Ко второму типу относятся тяжелые металлы, сульфиды, окисные рудные минералы и самородные металлы, состоящие преимущественно из элементов со структурой типа d. В этих элементах и минералах существенное слияние на физические параметры оказывает атомная масса. Модуль Юнга и модуль сдвига, скорость упругих волн уменьшается с ростом плотности. В минералах второго типа наблюдается некоторое уменьшение плотности упаковки атомов в веществе и значительное увеличение их средней атомной массы (от 20 до 200 а.е.м).
Таким образом, наиболее информативными характеристиками для определения упругих свойств элементов являются плотность упаковки и атомная масса. В общем виде зависимость скорости упругих волн может быть представлена выражением: (3.17).
- Петрофизика
- Введение
- Глава 1. Методика петрофизических исследований
- 1.2. Методы изучения физических свойств
- 1.3. Характеристика основных геофизических свойств горных пород.
- 1.4. Статистические методы обработки определений физических свойств.
- 1.5. Построение петрофизических карт и разрезов
- Петрофизические карты
- Окраска карт
- Карты физических параметров
- Специализированные карты
- Петрофизические разрезы
- Глава 2 Плотность и пористость минералов и горных пород
- Плотность минералов
- 2. 3. Плотность магматических пород
- Плотность метаморфических пород.
- 2.6. Плотность нефтей
- Определение плотности
- Глава 3. Упругие свойства минералов и горных пород
- 3.1. Упругие параметры физических тел
- Скорость упругих волн и упругие модули химических элементов и минералов
- 3.3 Скорости упругих волн в магматических и метаморфических породах.
- 3.4. Скорости упругих волн в осадочных породах.
- Методы изучения упругих свойств
- Глава 4 Теплофизические свойства минералов и горных пород
- 4.1 Теплофизические параметры веществ и методы их измерения
- 4.3.Теплофизические параметры горных пород
- Глава 5. Магнитные свойства минералов и горных пород
- 5.1. Магнитные параметры физических тел
- 5.2 Магнитные свойства химических элементов и минералов.
- 5.3. Магнитные свойства горных пород
- 5.4. Магнитная восприимчивость нефти.
- 5.5. Палеомагнитная характеристика горных пород
- Глава 6 Электрические свойства минералов и горных пород
- 6.1 Электрические свойства веществ
- 6.2. Удельное электрическое сопротивление элементов и минералов
- 6.3. Основные факторы, оказывающие влияние на удельное сопротивление минералов и горных пород.
- 6.4. Электрические свойства горных пород
- 6.5. Электрические свойства залежи нефти и газа
- 6.6. Методы определения электрических свойств горных пород
- Глава 7. Ядерно-физические (радиоактивные) свойства минералов и горных пород
- 7.1. Естественная радиоактивность
- 7.2. Радиоактивность минералов и горных пород.
- 7.3. Искусственная радиоактивность, используемая в ядерной геофизике.
- Глава 8 Петрофизическое моделирование.
- 8.1 Понятие о петрофизической модели
- 8.2. Формирование петрофизической модели
- 8.3. Выделение структурно-вещественных комплексов
- В.К.Хмелевской, Геофизические методы исследования земной коры. Международный университет природы, общества и человека "Дубна"1997 г.