7.3. Искусственная радиоактивность, используемая в ядерной геофизике.
Под ядерно-физическими (гамма- и нейтронными) свойствами горных пород понимают их способность по-разному рассеивать, замедлять и поглощать гамма-кванты или нейтроны разных энергий /4,6,8,9/.
Эти свойства вытекают из физических явлений, которые сопровождают взаимодействие гамма-квантов с электронами и ядрами атомов или нейтронов с ядрами атомов.
Наиболее вероятные процессы взаимодействия гамма-излучения с веществом являются:
фотоэлектрическое поглощение;
неупругое рассеяние на свободных электронах (комптоновское взаимодействие)
полное поглощение излучения в поле ядра (образование электронно-позитронных пар).
К взаимодействию нейтронного излучения с веществом относится неупругое и упругое рассеяние и поглощение, сопровождающееся захватом тепловых нейтронов ядрами атомов и вторичным гамма-излучением.
Вероятность того или иного взаимодействия зависит от энергии гамма-квантов или нейтронов, от пути проходящего излучения в горной породе и ее ядерно-физических свойств. Основными из этих свойств являются микро- или макроскопические сечения взаимодействия гамма-квантов и нейтронов с отдельными или всеми атомами изучаемой горной породы.
Основным гамма-лучевым свойством породы является ее способность поглощать и рассеивать гамма-лучи. Количественно это свойство описывается полным линейным коэффициентом ослабления и поглощения μγ или суммарным (полным) макроскопическим сечением взаимодействия гамма-лучей с единицей объема горной породы.
Для узкого пучка гамма-квантов его определяют с помощью следующих уравнений:
, (7.4, 7.5) |
|
где σγi- микроскопическое сечение взаимодействия атома i-го химического элемента с гамма-квантом при общем количестве атомов этого элемента в единице объема Ni и общем числе элементов K; Iγ,Iγ0- интенсивность гамма-излучения в конце и начале поглощающего слоя толщиной L. Практически определяют эффективный коэффициент ослабления μγэф по экспериментально полученной интенсивности вторичного гамма-излучения:
(7.6) |
|
Макроскопическое сечение взаимодействия, или эффективный линейный коэффициент ослабления, зависит от порядковых номеров в периодической системе Менделеева и массовых чисел химических элементов всей горной породы, а также ее плотности σ.
На изменении этих свойств основаны методы изучения химического состава и плотности горных пород по интенсивности вторичного (рассеянного) гамма-излучения:
(7.7).
При этом комптоновское рассеяние зависит от плотности, а фотоэффект - от химического состава и концентраций химических элементов
Основным нейтронным свойством горных пород и сред является их способность поглощать и рассеивать нейтроны. Количественно это свойство описывается полным линейным коэффициентом ослабления и поглощения μп или суммарным (полным) макроскопическим взаимодействием нейтронов с единицей объема горной породы.
Величина μп определяется микроскопическими сечениями рассеяния и поглощения нейтронов атомами или ядрами (σпi) всех составляющих ее химических элементов от i = 1 до i = k с числом атомов i-го элемента в единице объема Ni по формуле:
(7.8)
где (7.9)
Здесь Iп, Iп0- плотность потока нейтронов в конце и начале слоя толщиной L. Нейтронное микроскопическое сечение рассеяния и поглощения σпi измеряется в барнах и равно эффективной площади ядра, которая обычно больше его геометрического сечения.
Нейтронное сечение измеряют в единицах площади (10-25 м2). Наибольшими нейтронными сечениями обладают редкоземельные элементы, например, гадолиний (46*10-25 м2 ), кадмий (2,25*10-25 м2 ), бор (0,769*10-25 м2), ртуть (0,38*10-25 м2 ) и др. У большинства элементов микроскопическое сечение ядра изменяется в пределах (0,1 - 10)*10-25 м2. Практически коэффициент μп является эффективным коэффициентом, характеризующим и замедляющие, и поглощающие свойства горной породы μпэф при облучении ее нейтронами. Величину, обратную μпэф, называют полной длиной пробега нейтронов (Lп ). Она включает длину замедления и длину диффузии. Средняя длина замедления нейтронов (Lз) определяется способностью ядер рассеивать нейтроны и равна расстоянию, на котором энергия нейтронов уменьшается от исходной (у быстрых нейтронов энергия превышает 0,5 МэВ) до тепловой (0,025 эВ).
Наименьшей длиной замедления (Lз <10 см) обладают минералы, в которых имеются бериллий, углерод, железо и водородосодержащие породы, насыщенные водой, нефтью или газом. В других породах, особенно содержащих тяжелые химические элементы, L составляет первые десятки сантиметров.
Ослабленные до тепловой энергии нейтроны перемещаются в породе путем диффузии до тех пор, пока не поглотятся какими-нибудь ядрами. Как отмечалось выше, процесс захвата нейтронов сопровождается излучением вторичных гамма-квантов. Способность горных пород поглощать тепловые нейтроны выражаются через среднюю длину диффузии Lд или пропорциональное ей среднее время жизни тепловых нейтронов τтп. Наименьшими значениями этих параметров (Lд < 5 см, τтп <5 мкс) отличаются руды, содержащие химические элементы с высоким сечением поглощения нейтронов (редкоземельные, кадмий, бор, ртуть, железо, хлор и др.), и рыхлые осадочные породы, насыщенные минерализованными водами. Для большинства породообразующих минералов и горных пород Lд изменяется от 10 до 30 см, а τтп - от 10 до 3000 мкс.
Важным параметром среды является также коэффициент диффузии
(7.10)
Постоянными величинами диффузионных параметров характеризуются неглинистые и незагипсованные карбонатные отложения. Доломитизация известняков, сопровождающая повышенным содержанием магния, увеличивает значение τ. Чистые кварцевые песчаники и доломиты характеризуются наибольшими значениями времена жизни нейтронов. Минимальными значениями τ обладают гипсы, ангидриты и глинистые породы. Существенное влияние на величину коэффициента диффузии тепловых нейтронов в скелете оказывает наличие кристаллизационной воды. При содержании ее в породе более 5% величина D практически не зависит от минерального состава скелета.
На изменении перечисленных нейтронных свойств химических элементов основаны нейтронные методы поэлементного анализа горных пород и их водонефтегазонасыщенности. Они сводятся к изучению плотности (интенсивности) тепловых нейтронов Iпп или вторичного гамма-излучения Iпγ.
Контрольные вопросы к главе 7
Дайте характеристику естественной радиоактивности наиболее распространенных типов осадочных пород.
Какие минералы обладают наименьшей длиной замедления?
При каких условиях коэффициент диффузии не зависит от минерального состава пород?
- Петрофизика
- Введение
- Глава 1. Методика петрофизических исследований
- 1.2. Методы изучения физических свойств
- 1.3. Характеристика основных геофизических свойств горных пород.
- 1.4. Статистические методы обработки определений физических свойств.
- 1.5. Построение петрофизических карт и разрезов
- Петрофизические карты
- Окраска карт
- Карты физических параметров
- Специализированные карты
- Петрофизические разрезы
- Глава 2 Плотность и пористость минералов и горных пород
- Плотность минералов
- 2. 3. Плотность магматических пород
- Плотность метаморфических пород.
- 2.6. Плотность нефтей
- Определение плотности
- Глава 3. Упругие свойства минералов и горных пород
- 3.1. Упругие параметры физических тел
- Скорость упругих волн и упругие модули химических элементов и минералов
- 3.3 Скорости упругих волн в магматических и метаморфических породах.
- 3.4. Скорости упругих волн в осадочных породах.
- Методы изучения упругих свойств
- Глава 4 Теплофизические свойства минералов и горных пород
- 4.1 Теплофизические параметры веществ и методы их измерения
- 4.3.Теплофизические параметры горных пород
- Глава 5. Магнитные свойства минералов и горных пород
- 5.1. Магнитные параметры физических тел
- 5.2 Магнитные свойства химических элементов и минералов.
- 5.3. Магнитные свойства горных пород
- 5.4. Магнитная восприимчивость нефти.
- 5.5. Палеомагнитная характеристика горных пород
- Глава 6 Электрические свойства минералов и горных пород
- 6.1 Электрические свойства веществ
- 6.2. Удельное электрическое сопротивление элементов и минералов
- 6.3. Основные факторы, оказывающие влияние на удельное сопротивление минералов и горных пород.
- 6.4. Электрические свойства горных пород
- 6.5. Электрические свойства залежи нефти и газа
- 6.6. Методы определения электрических свойств горных пород
- Глава 7. Ядерно-физические (радиоактивные) свойства минералов и горных пород
- 7.1. Естественная радиоактивность
- 7.2. Радиоактивность минералов и горных пород.
- 7.3. Искусственная радиоактивность, используемая в ядерной геофизике.
- Глава 8 Петрофизическое моделирование.
- 8.1 Понятие о петрофизической модели
- 8.2. Формирование петрофизической модели
- 8.3. Выделение структурно-вещественных комплексов
- В.К.Хмелевской, Геофизические методы исследования земной коры. Международный университет природы, общества и человека "Дубна"1997 г.