6.1 Электрические свойства веществ
К основным электромагнитным свойствам горных пород относятся:
удельное электрическое сопротивление (ρ), электрохимическая активность (α), поляризуемость (η), диэлектрическая (ε) и магнитная (μ) проницаемости.
Помимо основных характеристик, при изучении электромагнитных полей используются и другие электромагнитные параметры, которые могут быть определены по числовым значениям основных характеристик. К ним относятся: волновое число среды, а также его компоненты – электромагнитный коэффициент среды, фазовая постоянная и коэффициент поглощения, волновое сопротивление (импеданс) среды, диэлектрические потери и время релаксации.
Применимость различных электроразведочных методов обуславливается разницей в электрических свойствах объектов поиска и вмещающей среды. В электроразведке используют многие электрические свойства пород, но важнейшим из них, измеряемым почти во всех методах, является удельное электрическое сопротивление ρ.
Из электрических характеристик горных пород наиболее полно изучена удельная электропроводность среды или обратная ей величина – удельное электрическое сопротивление ρ.
Удельное электрическое сопротивление это сопротивление, которое оказывает кубический метр горной породы электрическому току:
, (6.1)
где R- сопротивление вещества, Ом; l – длина тела, м; s – поперечное сечение его м2.
Способность горных пород пропускать электрический ток определяется их электропроводностью:
(6.2)
Процесс электропроводности обуславливается направленным движением заряженных частиц (ионов, электронов, дырок) под действием внешнего электрического поля. Единицей измерений удельной электропроводности в системе СИ является См/м, а удельного электрического сопротивления – Ом*м. Оно меняется в горных породах и рудах в очень широких пределах: от 10-3 до 1015 Омм.
Диэлектрическая проницаемость характеризует способность вещества изменять напряженность первичного электрического поля вследствие явления поляризации, т.е. упорядоченной ориентировки связанных электрических зарядов. При этом величина ε показывает, во сколько раз в данной среде сила взаимодействия (напряженность электрического поля) между электрическими зарядами уменьшается по сравнению с вакуумом.
В высокочастотном электромагнитном поле плотность полного электрического тока является суммой токов проводимости и токов смещения:
, где . (6.3, 6.4)
Абсолютная диэлектрическая проницаемость εа определяется отношением электрической индукции D к напряженности электрического поля E:
(Ф/м) (6.5) .
Если диэлектрическая проницаемость вакуума обозначить через ε0, то относительная диэлектрическая проницаемость среды:
( отн. Ед), (6.6)
где диэлектрическая проницаемость вакуума
Диэлектрическая и магнитная проницаемости играют значительную роль лишь при электроразведке на высоких частотах. Относительная диэлектрическая проницаемость показывает, во сколько раз увеличивается емкость конденсатора, если вместо воздуха в него поместить данную породу.
Под электрохимической активностью понимается свойство пород создавать естественные постоянные электрические поля. За электрохимическую активность α условно принимается коэффициент пропорциональности между потенциалом U или напряженностью естественного электрического поля и основными потенциал-образующими факторами, которыми они обусловлены.
Такими факторами являются: концентрация кислорода, водородный показатель кислотности подземных вод, отношение концентрации подземных вод, давление и др.
Коэффициент α измеряется в милливольтах.
Способность пород поляризоваться, т.е. накапливать заряд при пропускании тока, а затем разряжаться после отключения этого тока оценивается коэффициентом поляризуемости η ("эта"). Величина η вычисляется в процентах как отношение напряжения, которое остается в измерительной линии МN по истечении определенного времени (обычно 0,5-1 с) после размывания токовой цепи ΔUВП к напряжению в той же линии при пропускании тока ΔU, т.е.:
(6.8)
Поляризация - это сложный электрохимический процесс, протекающий при пропускании через породу постоянного или низкочастотного переменного (до 10 Гц) тока.
- Петрофизика
- Введение
- Глава 1. Методика петрофизических исследований
- 1.2. Методы изучения физических свойств
- 1.3. Характеристика основных геофизических свойств горных пород.
- 1.4. Статистические методы обработки определений физических свойств.
- 1.5. Построение петрофизических карт и разрезов
- Петрофизические карты
- Окраска карт
- Карты физических параметров
- Специализированные карты
- Петрофизические разрезы
- Глава 2 Плотность и пористость минералов и горных пород
- Плотность минералов
- 2. 3. Плотность магматических пород
- Плотность метаморфических пород.
- 2.6. Плотность нефтей
- Определение плотности
- Глава 3. Упругие свойства минералов и горных пород
- 3.1. Упругие параметры физических тел
- Скорость упругих волн и упругие модули химических элементов и минералов
- 3.3 Скорости упругих волн в магматических и метаморфических породах.
- 3.4. Скорости упругих волн в осадочных породах.
- Методы изучения упругих свойств
- Глава 4 Теплофизические свойства минералов и горных пород
- 4.1 Теплофизические параметры веществ и методы их измерения
- 4.3.Теплофизические параметры горных пород
- Глава 5. Магнитные свойства минералов и горных пород
- 5.1. Магнитные параметры физических тел
- 5.2 Магнитные свойства химических элементов и минералов.
- 5.3. Магнитные свойства горных пород
- 5.4. Магнитная восприимчивость нефти.
- 5.5. Палеомагнитная характеристика горных пород
- Глава 6 Электрические свойства минералов и горных пород
- 6.1 Электрические свойства веществ
- 6.2. Удельное электрическое сопротивление элементов и минералов
- 6.3. Основные факторы, оказывающие влияние на удельное сопротивление минералов и горных пород.
- 6.4. Электрические свойства горных пород
- 6.5. Электрические свойства залежи нефти и газа
- 6.6. Методы определения электрических свойств горных пород
- Глава 7. Ядерно-физические (радиоактивные) свойства минералов и горных пород
- 7.1. Естественная радиоактивность
- 7.2. Радиоактивность минералов и горных пород.
- 7.3. Искусственная радиоактивность, используемая в ядерной геофизике.
- Глава 8 Петрофизическое моделирование.
- 8.1 Понятие о петрофизической модели
- 8.2. Формирование петрофизической модели
- 8.3. Выделение структурно-вещественных комплексов
- В.К.Хмелевской, Геофизические методы исследования земной коры. Международный университет природы, общества и человека "Дубна"1997 г.