logo
Изучение интерференции совершенной скважины при фильтрации нефти и газа

4. Приток жидкости к скважине в пласте с прямолинейным контуром питания

Пусть в полубесконечном пласте с прямолинейным контуром питания, на котором потенциал равен Фк, работает одна добывающая скважина А с забойным потенциалом Фс (рис. 4). Необходимо найти дебит скважины q, потенциал и скорость фильтрации в любой точке пласта.

Если бы пласт был неограниченным или контур питания был бы кругом, в центре которого расположена скважина, то потенциал в любой точке пласта находился бы по формуле (4). При этом условие постоянства потенциала на прямолинейном контуре питания не выполняется, так как расстояние г разных точек контура питания от скважины А неодинаково.

Для решения задачи используем метод отображения источников и стоков. Зеркально отобразим скважину-сток А относительно контура питания и дебиту скважины-изображения А припишем противоположный знак, т. е. будем считать ее скважиной источником. Теперь рассмотрим в бесконечном пласте совместную работу двух скважин: скважины-стока А с дебитом +q и скважины-источники А с дебитом -q. Потенциал в любой точке М, находящейся на расстоянии r1 от скважины A и на расстоянии r2 от скважины А:

(12)

Потенциал на контуре питания можно выразить, подставив в (12) r1 = r2. В результате получим

Ф = С = Фк, (13)

т. е. потенциал на контуре питания действительно постоянен. Тогда из (12) с учетом (13) потенциал на забое скважины А (r1 = rc, r2 = 2а) можно выразить так:

(14)

Из (14) выражение для дебита скважины А, приходящегося на единицу толщины пласта, получим в следующем виде:

(15)

Если бы контур питания был окружностью радиуса а, то дебит скважины был бы равен (по формуле Дюпюи):

В реальных условиях форма контура питания MN (рис. 5) часто бывает неизвестна, но она заключена между окружностью и прямой линией.

Следовательно, дебит скважины в этих условиях будет находиться в пределах

Для определения потенциала в любой точке М (см. рис. 5) воспользуемся формулой (12) с учетом (13):

(16)

Скорость фильтрации равна геометрической сумме скоростей фильтрации, вызванных работой реальной скважины-стока А и фиктивной скважины-источника А (см. рис. 5), т. е.

где и направлена к скважине A; и направлена от скважины А.

На контуре питания, где r1 = r2, скорость фильтрации перпендикулярна контуру питания.

Из формулы (23) следует, что уравнение эквипотенциалей имеет вид:

(17)

Если выразить и через координаты точки М (х, у) и координаты центров скважин А (а, 0) и А (-а, 0), то будем иметь . Следовательно, уравнение (17) представляет собой уравнение окружности с центром на оси х. Меняя значение константы С2, получим семейство эквипотенциалей - окружностей с разными радиусами и с центрами, расположенными в разных точках оси х. Контур питания является эквипотенциалью, т. е. окружностью с бесконечно большим радиусом.

Семейство линий тока будет представлять собой окружности, проходящие через центры обеих скважин, которые лежат на прямолинейном контуре питания (рис. 6).

Рис. 6. Семейства линий тока и изобар в потоке жидкости к скважине в пласте с прямолинейным контуром питания.

При этом эквипотенциали (изобары) всегда ортогональны линиям тока. На рис. 6 показаны семейства линий тока и изобар при притоке жидкости к скважине в пласте с прямолинейным контуром питания.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4