2.4. Забойные телеметрические системы
Такие системы встраиваются в компоновку низа бурильной колонны и позволяют получить информацию с забоя скважины непосредственно при бурении (за исключением кратковременных остановок). Кроме инклинометрии измеряются также и некоторые другие параметры процесса углубки ствола. За рубежом такие системы называются MWD (Measurement While Drilling). Наибольшие сложности при этом возникают с передачей информации с забойных датчиков до устья скважины. В настоящее время используется четыре канала связи «забой-устье»:
кабельный;
электромагнитный (гальванический);
гидравлический;
Рис 13. Варианты устройств проводных каналов в связи с бурящейся скважине: 1 – долото; 2 – скважинный прибор; 3 – резьбовое соединение труб; 4 – привод; 5 – контактное устройство; 6 – наземный прибор; 7 – вертлюг; 8 – лебедка для подъема провода; 9 – сбросовый провод; 10 – вывод провода через резьбовое соединение; 11 - ретранслирующее устройство
акустический.
Разновидности кабельных каналов связи показаны на рис. 13. Канал связи со встроенными в каждую бурильную трубу отрезком кабеля (рис. 13, а) аналогичен используемому с электробуром. В этом случае требуются большие затраты времени на спуско-подъемные операции. В то же время надежность канала не очень велика. При вводе кабеля через вертлюг (рис. 13, б) необходим подъем его (кабеля) при каждом наращивании инструмента, а использование неизолированного («мокрого») контакта кабеля с прибором может давать погрешность в измерениях. При вводе кабеля через боковой переводник (рис. 13, в) возможно нарушение изоляции кабеля в кольцевом пространстве. Использование ретранслятора (рис. 13, г) и без того усложняет конструкцию системы. Вместе с тем скорость передачи информации в этом канале связи самая высокая - до нескольких десятков Кбит/с, кроме того, имеется возможность обратной связи «устье-забой». Источник энергии для работы забойных датчиков может располагаться на поверхности.
Рис. 14. Блок-схема забойной инклинометрической системы ЗИС-4: 1 - приемник; 2 – табло; 3 – ЦПУ; 4 – генератор; 5 – разделитель; 6 – датчики; 7 – передающий блок; 8 – измерительный блок
В зарубежной практике чаще используется гидравлический канал связи. В этом случае сигнал передается импульсами избыточного давления путем перекрытия канала прохода промывочной жидкости (рис. 15, а), импульсами падения давления открытием клапана, перекрывающего канал между колонной бурильных труб и кольцевым пространством (рис. 15, б) непрерывными импульсами избыточного давления, создаваемыми клапаном, вращающимся с определенной частотой. В первых двух случаях измеряемая величина может быть пропорциональна количеству импульсов, или времени между ними, а в последнем – сдвигу фаз. Один из недостатков гидравлического канала связи – низкая скорость передачи информации, не превышающая нескольких бит в секунду. Кроме того, к качеству бурового раствора предъявляются более высокие требования (содержание твердой фазы).
Рис. 15. Методы передачи информации по гидравлическому каналу связи: 1 - клапан; 2 – исполнительный механизм
Питание забойной аппаратуры с беспроводными каналами связи осуществляется либо от батарей, либо от встроенного в КНБК турбогенератора.
В используемых в настоящее время забойных телеметрических системах все необходимые датчики располагаются в колонне УБТ. Поэтому при использовании забойных двигателей и отклонителей они оказываются на значительном расстоянии от забоя, в связи с чем информация поступает с некоторой задержкой во времени. Для ликвидации этого недостатка начата разработка телесистем с датчиками, встроенными в долото, или в непосредственной близости от него.
Следует отметить, что применение забойных телеметрических систем существенно увеличивает себестоимость работ.
- Введение
- Историческая справка
- 1. Общие сведения об искривлении скважин
- 1.1. Элементы, определяющие пространственное положение и искривление скважин
- 1.2. Причины и закономерности естественного искривления скважин
- 1.2.1. Геологические причины искривления скважин
- 1.2.2. Технологические причины искривления скважин
- 1.2.3. Технические причины искривления скважин
- 1.3. Методика выявления закономерностей искривления скважин
- 1.4. Общие закономерности искривления скважин
- 2. Измерение искривления скважин
- 2.1. Датчики инклинометров
- 2.1.1. Датчики зенитного угла
- 2.1.2. Датчики азимута
- 2.2. Инклинометры, опускаемые на кабеле
- 2.3. Автономные инклинометры
- 2.4. Забойные телеметрические системы
- 2.5. Периодичность и шаг измерений
- 2.6. Ошибки измерения искривления
- 3. Проектирование профилей направленных скважин
- 3.1. Типы профилей и рекомендации по их выбору
- 3.2. Определение допустимой интенсивности искривления скважин
- 3.3. Расчет профиля скважины
- 3.3.1. Теоретические основы расчета профиля скважины
- 3.3.2. Трехинтервальный профиль
- 3.3.3. Четырехинтервальный профиль
- 3.3.4. Пятиинтервальный профиль
- 4. Построение проекций скважин по данным инклинометрических замеров и контроль за траекторией ствола
- 4.1. Графический способ построения проекций скважин
- 4.2. Допустимые отклонения забоя скважины от проекта
- 4.3. Расчет величин ошибок в положении забоя скважин
- 4.4. Аналитическое определение координат ствола скважины
- 4.5. Вероятность попадания скважины в круг допуска
- 5. Технические средства направленного бурения
- Основные размеры отклонителей и их энергетические параметры
- Технические характеристики взд для бурения направленных скважин
- 6. Ориентирование отклонителей
- Угол закручивания инструмента при бурении под кондуктор
- Угол закручивания инструмента при бурении под эксплуатационную колонну
- 7. Неориентируемые компоновки для управления искривлением скважин
- 7.1. Компоновки для бурения вертикальных участков скважин
- 7.2. Компоновки для регулирования зенитного угла наклонных скважин
- Размеры компоновок с центраторами для управления искривлением наклонных скважин
- 8. Бурение скважин с кустовых площадок
- 8.1. Особенности проектирования и бурения скважин с кустовых площадок
- 8.2. Оптимальное число скважин в кусте
- 8.3. Специальные установки для кустового бурения
- 9. Бурение горизонтальных скважин
- 9.1. Особенности и преимущества горизонтальных скважин
- Таким образом, применение горизонтальных скважин при добыче углеводородного сырья позволяет:
- 9.2. Профили горизонтальных скважин
- 9.2.1. Классификация профилей
- 9.2.2. Положение и профиль ствола в продуктивном горизонте
- 9.2.3. Рациональная длина горизонтального ствола
- 9.2.4. Расчет профиля горизонтальной скважины
- Для участка уменьшения зенитного угла
- 9.3. Компоновки низа бурильной колонны для бурения горизонтальных скважин
- 9.4. Промывка горизонтальных скважин
- 9.5. Исследования и измерения при бурении горизонтальных скважин
- 9.6. Заканчивание горизонтальных скважин
- 10. Бурение дополнительных стволов
- 11. Радиальное бурение
- 12. Силы сопротивления перемещению труб в скважине
- Заключение
- Литература
- Содержание
- 9.2. Профили горизонтальных скважин 83
- 9.6. Заканчивание горизонтальных скважин 101