1.2.3. Технические причины искривления скважин
К техническим причинам естественного искривления скважин относятся тип и конструктивные особенности породоразрушающего инструмента и компоновка бурового снаряда.
Вид и конструкция породоразрушающего инструмента определяют механизм разрушения горной породы, что в конечном итоге оказывает влияние на направление и интенсивность искривления. При применении безопорных долот (алмазные, ИСМ) разрушение породы на забое происходит более равномерно, разработка стенок скважины невелика, следовательно следует ожидать меньшего искривления скважин по сравнению со скважинами, буримыми шарошечными долотами, при прочих равных условиях. При использовании долот с увеличенным выходом породоразрушающих элементов за боковую поверхность (усиленным боковым вооружением) интенсивность искривления увеличивается. Форма торца породоразрушающего инструмента также оказывает влияние на искривление скважин. Минимальное искривление наблюдается при плоском торце долота. При бурении анизотропных и слоистых пород долотами с разной формой торца можно изменить направление искривления скважин, как это видно из рис. 6. Вопросы искривления скважин в этом случае достаточно подробно были рассмотрены Ю.Л. Боярко.
Компоновка низа бурильной колонны оказывает весьма существенное влияние на искривление скважин. В первую очередь следует отметить важное значение мест установки и диаметров центраторов, калибраторов, стабилизаторов. Меняя эти параметры, можно менять как интенсивность, так и направление искривления. Более подробно эти вопросы будут рассмотрены далее.
При большой разнице диаметров долота и забойного двигателя или УБТ (при роторном бурении) угол между осями скважины и инструмента достигает значительной величины, а следовательно, увеличивается интенсивность искривления. Радиус кривизны R скважины при этом с достаточной степенью точности может быть определен по формуле
R = l2/(Dc - d), (7)
где l - длина инструмента от долота до первой точки касания со стенкой скважины, м; Dc - диаметр скважины, м; d - диаметр бурового инструмента в точке касания, м.
Уменьшение жесткости инструмента приводит к тому, что продольный изгиб происходит при меньших осевых нагрузках. В результате первая точка касания инструмента со стенкой скважины приближается к забою, и интенсивность искривления увеличивается. Критическая осевая нагрузка, при которой происходит продольный изгиб стального инструмента длиной l (в мм), определяется по формуле
Pкр = [0,96 . 106 (Dн4 - Dв4)]/ l2, (8)
где Dн и Dв - соответственно наружный и внутренний диаметры инструмента, мм.
При роторном бурении включение в КНБК эксцентричных соединений (переводников) приводит к тому, что колонна вращается вокруг оси скважины, и искривление уменьшается.
С увеличением зенитного угла скважины интенсивность искривления, как правило, снижается, а в мягких породах под действием веса колонны бурильных труб происходит интенсивное разбуривание лежачей стенки скважины и искривление ее в сторону уменьшения зенитного угла.
- Введение
- Историческая справка
- 1. Общие сведения об искривлении скважин
- 1.1. Элементы, определяющие пространственное положение и искривление скважин
- 1.2. Причины и закономерности естественного искривления скважин
- 1.2.1. Геологические причины искривления скважин
- 1.2.2. Технологические причины искривления скважин
- 1.2.3. Технические причины искривления скважин
- 1.3. Методика выявления закономерностей искривления скважин
- 1.4. Общие закономерности искривления скважин
- 2. Измерение искривления скважин
- 2.1. Датчики инклинометров
- 2.1.1. Датчики зенитного угла
- 2.1.2. Датчики азимута
- 2.2. Инклинометры, опускаемые на кабеле
- 2.3. Автономные инклинометры
- 2.4. Забойные телеметрические системы
- 2.5. Периодичность и шаг измерений
- 2.6. Ошибки измерения искривления
- 3. Проектирование профилей направленных скважин
- 3.1. Типы профилей и рекомендации по их выбору
- 3.2. Определение допустимой интенсивности искривления скважин
- 3.3. Расчет профиля скважины
- 3.3.1. Теоретические основы расчета профиля скважины
- 3.3.2. Трехинтервальный профиль
- 3.3.3. Четырехинтервальный профиль
- 3.3.4. Пятиинтервальный профиль
- 4. Построение проекций скважин по данным инклинометрических замеров и контроль за траекторией ствола
- 4.1. Графический способ построения проекций скважин
- 4.2. Допустимые отклонения забоя скважины от проекта
- 4.3. Расчет величин ошибок в положении забоя скважин
- 4.4. Аналитическое определение координат ствола скважины
- 4.5. Вероятность попадания скважины в круг допуска
- 5. Технические средства направленного бурения
- Основные размеры отклонителей и их энергетические параметры
- Технические характеристики взд для бурения направленных скважин
- 6. Ориентирование отклонителей
- Угол закручивания инструмента при бурении под кондуктор
- Угол закручивания инструмента при бурении под эксплуатационную колонну
- 7. Неориентируемые компоновки для управления искривлением скважин
- 7.1. Компоновки для бурения вертикальных участков скважин
- 7.2. Компоновки для регулирования зенитного угла наклонных скважин
- Размеры компоновок с центраторами для управления искривлением наклонных скважин
- 8. Бурение скважин с кустовых площадок
- 8.1. Особенности проектирования и бурения скважин с кустовых площадок
- 8.2. Оптимальное число скважин в кусте
- 8.3. Специальные установки для кустового бурения
- 9. Бурение горизонтальных скважин
- 9.1. Особенности и преимущества горизонтальных скважин
- Таким образом, применение горизонтальных скважин при добыче углеводородного сырья позволяет:
- 9.2. Профили горизонтальных скважин
- 9.2.1. Классификация профилей
- 9.2.2. Положение и профиль ствола в продуктивном горизонте
- 9.2.3. Рациональная длина горизонтального ствола
- 9.2.4. Расчет профиля горизонтальной скважины
- Для участка уменьшения зенитного угла
- 9.3. Компоновки низа бурильной колонны для бурения горизонтальных скважин
- 9.4. Промывка горизонтальных скважин
- 9.5. Исследования и измерения при бурении горизонтальных скважин
- 9.6. Заканчивание горизонтальных скважин
- 10. Бурение дополнительных стволов
- 11. Радиальное бурение
- 12. Силы сопротивления перемещению труб в скважине
- Заключение
- Литература
- Содержание
- 9.2. Профили горизонтальных скважин 83
- 9.6. Заканчивание горизонтальных скважин 101