5.6 Математическая обработка результатов прямых неравноточных измерений
Веса измерений. Неравноточными называют измерения, выполненные приборами различной точности, разным числом приемов, в различных условиях.
При неравноточных измерениях точность каждого результата измерений характеризуется своей среднеквадратической погрешностью. Наряду со средней квадратической погрешностью при обработке неравноточных измерений пользуются относительной характеристикой точности – весом измерения. Вес i-го измерения вычисляют по формуле
(5.9)
где с – произвольная постоянная, назначаемая вычислителем, mi – средняя квадратическая погрешность i-го измерения.
Так, имея ряд результатов измерений l1, l2, ..., ln , со средними квадратическими погрешностями m1 , m2 , ..., mn , определяют их веса:
p1 = c / m12 , p2 = c / m22 , ..., pn = c / mn2.
Часто постоянную с для удобства дальнейших вычислений назначают так, чтобы веса pi оказались целыми числами.
Рассмотрим смысл произвольной постоянной с. Предположим, что в результате фиксирования значения с вес j-го измерения стал равен 1, то есть pj = c / mj2 = 1. Отсюда находим c = mj2. Следовательно, постоянная с есть квадрат средней квадратической погрешности 2 такого измерения, вес которого принят за единицу (с = 2).
Теперь (5.9) можем записать так
. (5.10)
Кратко называют средней квадратической погрешностью единицы веса.
Вес арифметической средины. Рассмотрим вес арифметической средины равноточных измерений. Примем в формуле (5.8) за единицу вес одного измерения, то есть = m, и запишем .
Тогда согласно (5.10) вес Р арифметической средины L будет равен
P = = n. (5.11)
Вывод. Если за единицу веса принят вес одного измерения, то согласно (5.11) вес арифметической средины равен числу измерений.
Следствие. Если результат l измерения имеет вес р, то можем считать, что l является средним арифметическим из р измерений с весом 1.
Общая арифметическая средина результатов неравноточных измерений. Пусть имеем результаты многократных неравноточных измерений одной величины: l1, l2, …, ln, выполненных с весами p1, p2, …, pn.
Представим каждый из результатов li (i = 1, 2, …, n) как среднее из pi результатов с весом 1. Получим такой ряд результатов равноточных измерений:
l1 результат p1 измерений с весом 1,
l2 результат p2 измерений с весом 1,
ln результат pn измерений с весом 1,
где общее число измерений с весом 1 равно p1 + p2 ++ pn .
Нами составлен ряд результатов равноточных измерений, позволяющий найти окончательное значение измеряемой величины как среднее арифметическое из всех результатов измерений
. (5.12)
Значение, вычисляемое по формуле (5.12), называют общей арифметической срединой или весовым средним.
Оценки точности результатов неравноточных измерений. Приведем без вывода формулы характеристик точности, используемых при обработке прямых неравноточных измерений.
Средняя квадратическая погрешность измерения, имеющего вес, равный единице:
формула Гаусса: .
Формула применяется, когда известно достаточно точное, близкое к истинному, значение X измеряемой величины.
формула Бесселя: ,
где vi поправки к результатам измерений:
.
Средняя квадратическая погрешность общей арифметической средины
Обработка результатов неравноточных измерений. Математическая обработка ряда результатов прямых неравноточных измерений одной величины выполняется в следующей последовательности.
1. Вычисление весового среднего (общей арифметической средины)
.
2. Вычисление поправок к результатам измерений:
(i = 1, 2,…, n).
Контролем правильности вычислений служит равенство
3. Вычисление средней квадратической погрешности одного измерения по уклонениям от арифметической средины, используя формулу Бесселя для неравноточных измерений:
.
4. Вычисление средней квадратической погрешности весового среднего
.
- Инженерная геодезия
- Часть I санкт-петербург
- 1. Предмет инженерной геодезии
- 2. Форма и размеры земли. Системы координат. Высоты
- 2.1. Форма и размеры Земли
- 2.2. Системы координат, применяемые в геодезии
- Долгота осевого меридиана зоны с номером n равна:
- 2.3. Системы высот
- 3. Ориентирование линий. Прямая и обратная геодезические задачи на плоскости
- 3.1. Углы ориентирования
- Приближенно сближение меридианов равно
- 3.2. Прямая и обратная геодезические задачи на плоскости
- 4. План и карта
- 4.1. План, карта, цифровая модель местности
- 4.2. Разграфка и номенклатура топографических карт и планов
- 4.3. Условные знаки топографических карт и планов
- 4.4. Решение задач по топографической карте
- 4.5. Определение площадей по картам и планам
- 5. Математическая обработка результатов геодезических измерений
- 5.1 Погрешности измерений
- 5.2 Свойства случайных погрешностей
- 5.3 Характеристики точности измерений
- 5.4 Средняя квадратическая погрешность функции измеренных величин.
- 5.5 Математическая обработка результатов прямых равноточных измерений
- Обработка результатов равноточных измерений. Математическая обработка ряда результатов l1, l2, …, ln прямых равноточных измерений одной величины выполняется в следующей последовательности:
- 5.6 Математическая обработка результатов прямых неравноточных измерений
- 5.7. Понятие об уравнивании геодезической сети
- 6. Геодезические сети
- 6.1. Методы построения плановых сетей
- 6.2. Основные виды плановых геодезических сетей
- 6.3. Закрепление пунктов плановых геодезических сетей
- 6.4. Создание съемочных сетей проложением теодолитных ходов
- Ведомость вычисления координат точек теодолитного хода
- Невязки в координатах находят по формулам:
- 6.5. Определение координат засечками
- 7. Измерение углов
- 7.1. Определения
- 7.2. Устройство теодолитов
- 7.3. Измерение горизонтальных углов
- 7.4. Измерение вертикальных углов
- 7.5. Поверки теодолита
- 8. Измерение длин линий
- 8.1. Измерение длин линий мерными лентами и рулетками
- Поправка за компарированиеопределяется по формуле
- 8.2. Определение недоступных расстояний
- 8.3. Нитяный дальномер
- Вторым слагаемым по его малости пренебрежем. Получим
- 8.4. Светодальномеры, электронные тахеометры
- 9. Нивелирование
- 9.1. Методы нивелирования
- 9.2. Геометрическое нивелирование
- 9.3. Нивелиры
- Отечественная и зарубежная промышленность выпускает приборы различной конструкции и точности.
- По устройству различают следующие типы нивелиров.
- 9.4. Нивелир с уровнем при трубе
- 9.5. Поверки нивелира
- 9.6. Нивелирные рейки
- 9.7. Влияние кривизны Земли и рефракции на результаты нивелирования
- 9.8. Нивелирные сети
- 9.9. Тригонометрическое нивелирование
- 9.10. Теодолитно-высотные и тахеометрические ходы.
- Литература
- Содержание