5.4 Средняя квадратическая погрешность функции измеренных величин.
В практике геодезических измерений определяемые величины обычно являются функциями других, непосредственно измеряемых величин. Рассмотрим функцию u независимых переменных x, y, z, …
u = f (x,y,z…). (5.5)
Продифференцируем функцию (5.5) по всем переменным и заменим дифференциалы du, dx, dy, dz, …. погрешностями u, x, y, z, ….
Получили выражение случайной погрешности u в зависимости от случайной комбинации погрешностей x, y, z, …. Положим, что имеем n таких комбинаций, которым соответствует n выражений:
(i = 1, 2, …, n)
Возведем полученные выражения в квадрат, сложим и разделим на n:
,
где квадратными скобками обозначены суммы.
Устремим число комбинаций в бесконечность (n ) и, воспользовавшись выражениями (5.4) и (5.3), получим: ,,,,. И окончательно
(5.6)
Итак, квадрат средней квадратической погрешности функции общего вида равен сумме квадратов произведений частных производных по каждой переменной, умноженных на их средние квадратические погрешности.
Частные случаи.
1. Функция u является суммой переменных x , y, z:
u = x + y + z.
В этом случае =1,=1,=1. Следовательно
=++.
2. Функция u является разностью переменных x и y:
u = x y.
В этом случае =1,=1. Следовательно
=+.
3. Функция u имеет вид:
u = k x,
где k – постоянный множитель. Теперь = k, поэтому =k2и
mu = k mx.
4. Функция u является линейной функцией от x, y, z, …:
u = k1 x + k2 y + k3 z …,
где ki постоянные множители. Теперь частные производные равны =k1, = k2, = k3. Поэтому
.
Рассмотрим примеры.
Пример 1. Определить среднюю квадратическую погрешность превышения, вычисленного по горизонтальному расстоянию d=124,16 м и углу наклона =2°16´, если md = 0,06 м, а m = 1´.
Превышение вычисляют по формуле
h = d tgν.
Продифференцируем формулу по переменным d и :
, .
Используя формулу общего вида (5.6) получим
Подставляя исходные данные, найдем
где 3438 число минут в радиане. И окончательно mh=0,036 .м.
Пример 2. При геометрическом нивелировании (см. раздел 9.2) превышение вычисляют как разность отчетов по рейкам
h = a b.
Отчеты берут с точностью ma = mb = 2 мм. Находим среднюю квадратическую погрешность превышения
= 2,8 мм
Пример 3. Выведем формулу допустимой угловой невязки замкнутого теодолитного хода (см. раздел 9.4). Невязку вычисляют по формуле
f = 1 + 2 + + n 180(n 2),
где i – измеренные углы (i = 1, 2, , n) и n – их число.
Невязка результат погрешностей в углах i. Поэтому средняя квадратическая погрешность невязки равна
mf = =,
где m1 = m2 = = mn = m – средняя квадратическая погрешность измерения угла. Примем ее равной m = 0,5.
Допуском угловой невязки (f)доп служит предельная погрешность (f)пред=2mf. Получаем формулу
(f)доп = 1.
- Инженерная геодезия
- Часть I санкт-петербург
- 1. Предмет инженерной геодезии
- 2. Форма и размеры земли. Системы координат. Высоты
- 2.1. Форма и размеры Земли
- 2.2. Системы координат, применяемые в геодезии
- Долгота осевого меридиана зоны с номером n равна:
- 2.3. Системы высот
- 3. Ориентирование линий. Прямая и обратная геодезические задачи на плоскости
- 3.1. Углы ориентирования
- Приближенно сближение меридианов равно
- 3.2. Прямая и обратная геодезические задачи на плоскости
- 4. План и карта
- 4.1. План, карта, цифровая модель местности
- 4.2. Разграфка и номенклатура топографических карт и планов
- 4.3. Условные знаки топографических карт и планов
- 4.4. Решение задач по топографической карте
- 4.5. Определение площадей по картам и планам
- 5. Математическая обработка результатов геодезических измерений
- 5.1 Погрешности измерений
- 5.2 Свойства случайных погрешностей
- 5.3 Характеристики точности измерений
- 5.4 Средняя квадратическая погрешность функции измеренных величин.
- 5.5 Математическая обработка результатов прямых равноточных измерений
- Обработка результатов равноточных измерений. Математическая обработка ряда результатов l1, l2, …, ln прямых равноточных измерений одной величины выполняется в следующей последовательности:
- 5.6 Математическая обработка результатов прямых неравноточных измерений
- 5.7. Понятие об уравнивании геодезической сети
- 6. Геодезические сети
- 6.1. Методы построения плановых сетей
- 6.2. Основные виды плановых геодезических сетей
- 6.3. Закрепление пунктов плановых геодезических сетей
- 6.4. Создание съемочных сетей проложением теодолитных ходов
- Ведомость вычисления координат точек теодолитного хода
- Невязки в координатах находят по формулам:
- 6.5. Определение координат засечками
- 7. Измерение углов
- 7.1. Определения
- 7.2. Устройство теодолитов
- 7.3. Измерение горизонтальных углов
- 7.4. Измерение вертикальных углов
- 7.5. Поверки теодолита
- 8. Измерение длин линий
- 8.1. Измерение длин линий мерными лентами и рулетками
- Поправка за компарированиеопределяется по формуле
- 8.2. Определение недоступных расстояний
- 8.3. Нитяный дальномер
- Вторым слагаемым по его малости пренебрежем. Получим
- 8.4. Светодальномеры, электронные тахеометры
- 9. Нивелирование
- 9.1. Методы нивелирования
- 9.2. Геометрическое нивелирование
- 9.3. Нивелиры
- Отечественная и зарубежная промышленность выпускает приборы различной конструкции и точности.
- По устройству различают следующие типы нивелиров.
- 9.4. Нивелир с уровнем при трубе
- 9.5. Поверки нивелира
- 9.6. Нивелирные рейки
- 9.7. Влияние кривизны Земли и рефракции на результаты нивелирования
- 9.8. Нивелирные сети
- 9.9. Тригонометрическое нивелирование
- 9.10. Теодолитно-высотные и тахеометрические ходы.
- Литература
- Содержание