logo search
учебники / Инженерная Геодезия

2.2. Системы координат, применяемые в геодезии

Для определения положения точек в геодезии применяют пространственные прямоугольные, геодезические и плоские прямоугольные координаты.

Пространственные прямоугольные координаты. Начало системы координат расположено в центре O земного эллипсоида (рис. 2.2).

Рис. 2.2. Земной эллипсоид и координаты: Х, Y , Z – пространственные прямоугольные; B, L, H  геодезические; G  Гринвич

Ось Z направлена по оси вращения эллипсоида к северу. Ось Х лежит в пересечении плоскости экватора с начальным  гринвичским меридианом. Ось Y направлена перпендикулярно осям Z и X на восток.

Геодезические координаты. Геодезическими координатами точки являются ее широта, долгота и высота (рис. 2.2).

Геодезической широтойточкиМназывается уголВ, образованный нормалью к поверхности эллипсоида, проходящей через данную точку, и плоскостью экватора.

Широта отсчитывается от экватора к северу и югу от 0до 90и называется северной или южной. Северную широту считают положительной, а южнуюотрицательной.

Плоскости сечения эллипсоида, проходящие через ось OZ, называютсягеодезическими меридианами.

Геодезической долготойточкиМназывается двугранный уголL, образованный плоскостями начального (гринвичского) геодезического меридиана и геодезического меридиана данной точки.

Долготы отсчитывают от начального меридиана в пределах от 0до 360на восток, или от 0до 180на восток (положительные) и от 0до 180на запад (отрицательные).

Геодезической высотойточкиМявляется ее высотаНнад поверхностью земного эллипсоида.

Геодезические координаты с пространственными прямоугольными координатами связаны формулами

X = (N + H) cosB cosL,

Y = (N+H) cosB sinL,

Z = [(1 e2) N+H] sinB,

где e  первый эксцентриситет меридианного эллипса и N радиус кривизны первого вертикала. При этом N=a/(1  e2 sin2B)1/2.

Геодезические и пространственные прямоугольные координаты точек определяют с помощью спутниковых измерений, а также путем их привязки геодезическими измерениями к точкам с известными координатами.

Отметим, что наряду с геодезическими существуют еще астрономические широта и долгота. Астрономическая широта  это  угол, составленный отвесной линией в данной точке с плоскостью экватора. Астрономическая долгота  – угол между плоскостями Гринвичского меридиана и проходящего через отвесную линию в данной точке астрономического меридиана. Астрономические координаты определяют на местности из астрономических наблюдений.

Астрономические координаты отличаются от геодезических потому, что направления отвесных линий не совпадают с направлениями нормалей к поверхности эллипсоида. Угол между направлением нормали к поверхности эллипсоида и отвесной линией в данной точке земной поверхности называется уклонением отвесной линии.

Обобщением геодезических и астрономических координат является термин – географические координаты.

Плоские прямоугольные координаты. Для решения задач инженерной геодезии от пространственных и геодезических координат переходят к более простым – плоским координатам, позволяющим изображать местность на плоскости и определять положение точек двумя координатами х и у.

Поскольку выпуклую поверхность Земли изобразить на плоскости без искажений нельзя, введение плоских координат возможно только на ограниченных участках, где искажения так малы, что ими можно пренебречь. В России принята система прямоугольных координат, основой которой является равноугольная поперечно–цилиндрическая проекция Гаусса. Поверхность эллипсоида изображается на плоскости по частям, называемым зонами. Зоны представляют собой сферические двуугольники, ограниченные меридианами, и простирающиеся от северного полюса до южного (рис. 2.3). Размер зоны по долготе равен 6. Центральный меридиан каждой зоны называется осевым. Нумерация зон идет от Гринвича к востоку.

Рис. 2.3. Деление поверхности Земли на координатные зоны: G– Гринвич