logo
Добыча нефти и газа на Ярино-Каменноложском, Кокуйском и Уньвинском месторождениях

2.2 Газовая скважина. Газокомпрессорная станция

Существенное отличие физических свойств газа от физических свойств нефти, выражается, главным образом, в его незначительной плотности, высокой упругости, значительно меньшей вязкости, определяет специфику разработки газовых и газоконденсатных месторождений, заключающуюся в том, что газ добывают, в основном, фонтанным способом. При этом сложная и протяженная система газоснабжения от залежи до потребления полностью герметична и представляет собой единое целое.

Газовые месторождения разделяют на чисто газовые месторождения и газоконденсатные. На газовых месторождениях из скважин поступает чистый газ (природный газ) вместе с небольшим количеством влаги и твердыми частицами механических примесей. Природный газ состоит в основном из легкого углеводорода - метана (9498%), не конденсирующегося при изменении пластового давления.

В состав газоконденсатных месторождений входит не только легкий углеводород парафинового ряда - метан, но и более тяжелые, углеводороды при изменении пластового давления переходящие в жидкое состояние, образуя так называемый конденсат. Вместе с газом и конденсатом с забоя скважин поступает вода и твердые частицы механических примесей. Такие газы называются кислыми. На отдельных месторождениях вместе с газом из скважин поступает достаточно большое количество ценных инертных газов (в основном, гелия).

Основной метод добычи газа и газового конденсата - фонтанный, так как газ в продуктивном пласте обладает достаточно большой энергией, обеспечивающей его перемещение по капиллярным каналам пласта к забоям газовых скважин. Как и при фонтанном способе добычи нефти, газ поступает к устью скважины по колонне фонтанных труб.

Добычу газа ведут из одного пласта (однопластовые месторождения) и из двух и более пластов (многопластовые месторождения).

Оптимальный диаметр фонтанных труб определяют, исходя из двух критериев: максимального выноса с забоя скважин на поверхность твердых и жидких примесей газа и минимума потерь давления в трубах при заданном дебите газовой скважины. Вынос твердых частиц с забоя скважины с потоками газа обеспечивается в том случае, если скорость восходящего потока в скважине превысит критическую скорость, при которой твердые частицы еще будут находиться во взвешенном состоянии в потоке газа.

Оборудование устья и забоя газовых скважин, а также конструкция газовой скважины практически аналогичны нефтяным скважинам.

Газовая скважина и «метанольница»

Эксплуатация газовых скважин связана с необходимостью обеспечения заданного дебита газа и газового конденсата. Это зависит во многом от состояния призабойной зоны скважины, степени ее обводненности, наличия в составе газа и конденсата агрессивных компонентов (сероводорода, углекислого газа) и других факторов, среди которых важное значение имеет число одновременно эксплуатируемых продуктивных пластов в одной скважине.

При значительных пескопроявлениях продуктивного пласта на забое скважины образуются малопроницаемые для газа песчаные пробки, существенно снижающие дебит скважин. Например, при равенстве проницаемостей пласта и песчаной пробки дебит скважин составляет всего 5% дебита скважины газа незасоренной скважины. Основные задачи, решаемые при эксплуатации газовых скважин с пескопроявлениями на забое: с одной стороны, предотвращение образования песчаных пробок за счет ограничения дебита скважин; с другой стороны, выбор такого дебита скважины, при котором обеспечивался бы вынос частиц песка, проникающих на забой, на поверхность, к устью скважины. Наконец, если снижение дебита скважины для предотвращения образования песчаных пробок окажется намного меньше потенциального дебита скважины, то необходимо решать вопрос о защите призабойной зоны скважины от попадания песка и образования песчаных пробок с сохранением высокого дебита скважины. В последнем случае для защиты забоя скважины от попадания песка устанавливают различные фильтры: с круглыми отверстиями, щелевые и проволочные. Первые два вида фильтров представляют собой отрезки труб с круглыми отверстиями диаметром 1,5 - 2 мм или с продолговатыми отверстиями типа щелей. Проволочные фильтры - это обрезки труб с круглыми крупными отверстиями, обмотанные проволокой с малым шагом навивки. Применяют также закрепление слабых пород призабойной зоны пласта для предотвращения их разрушения и засорения забоя скважины. Для этого в скважину закачивают водные суспензии различных смол (фенольно-формальдегидных, карбамидных и др.). При этом в пласте смола отделяется от воды и цементирует частицы песка, а вода заполняет капиллярные каналы и удаляется из них при освоении скважин. Для удаления песчаных пробок применяют также промывку скважин.

При эксплуатации газовых скважин в условиях обводнения призабойной зоны следует учитывать такие отрицательные последствия, как снижение дебита скважины, сильное обводнение газа, а значит, и большой объем его сепарации на промыслах для отделения воды, опасность образования большого объема кристаллогидратов и др. В связи с этим необходимо постоянное удаление воды из призабойной зоны скважины.

Применяют периодическое и непрерывное удаление влаги из скважины. К периодическим методам удаления влаги относят: остановку скважины (периодическую) для обратного поглощения жидкости пластом; продувку скважины в атмосферу или через сифонные трубки; вспенивание жидкости в скважине за счет введения в скважину пенообразующих веществ (пенообразователей). К непрерывным методам удаления влаги из скважины относят: эксплуатацию скважин при скоростях выходящего газа, обеспечивающих вынос воды с забоя; непрерывную продувку скважин через сифонные или фонтанные трубы; применение плунжерного лифта; откачку жидкости скважинными насосами; непрерывное вспенивание жидкости в скважине. Выбор метода удаления влаги зависит от многих факторов. При малых дебитах газа из скважины достаточно применение одного из периодических методов удаления влаги, а при больших дебитах - одного из непрерывных методов. Широко применяется относительно недорогой и достаточно эффективный метод введения в скважину веществ - пенообразователей. В качестве пенообразователей используют поверхностно-активные вещества (ПАВ) - сильные пенообразователи - сульфанол, синтетические моющие порошки (" Кристалл", "Луч") и др. Вспененная жидкость имеет значительно меньшую плотность и легко выносится на поверхность с потоком газа.

При добыче кислых газов главное - защита обсадных и фонтанных труб и оборудования от агрессивного действия сероводорода и углекислого газа. Для защиты труб и оборудования от коррозии разработаны различные методы: ингибирование с помощью веществ - ингибиторов коррозии; применение для оборудования легированных коррозионно-стойких сталей и сплавов; применение коррозионно-стойких неметаллических и металлических покрытий, использование электрохимических методов защиты от коррозии: использование специальных технологических режимов эксплуатации оборудования.

Наибольшее применение в практике эксплуатации газовых скважин при добыче кислых газов для защиты от коррозии нашли ингибиторы, т.е. вещества, при введении которых в коррозионную среду скорость коррозии значительно снижается или коррозия полностью прекращается.

Схемы ввода ингибиторов: а) инжекция ингибиторов в межтрубное пространство; б) закачка ингибиторов непосредственно в пласт; в) введение ингибиторов в твердом состоянии. В межтрубное пространство ингибитор инжектируют с помощью специальной дозаторной установки. Ингибитор в строго дозированном количестве под действием силы тяжести постоянно подается в межтрубное пространство, поступает на забой скважины и потоком газа по фонтанным трубам выносится на поверхность. Наличие в потоке газа с агрессивными компонентами ингибитора позволяет снизить скорость коррозии и заметно ослабить ее опасные последствия. Для борьбы с сероводородной коррозией эффективно вводить ингибиторы непосредственно в пласт. Ингибиторы в пласты закачивают с помощью цементировочных агрегатов под давлением один раз за время от 3 до 12 мес. Однако, при закачке ингибиторов непосредственно в пласты необходимо принимать меры, предотвращающие загрязнение капиллярных каналов пласта.

Для изготовления подземного оборудования (пакеры, циркуляционные и предохранительные клапаны и др.) используют легированные коррозионно-стойкие стали. В отдельных случаях для фонтанных и обсадных труб применяют алюминиевые сплавы - дуралюмины Д16Т, Д16АТ, хромистые нержавеющие стали марок 2Х13, 1Х13, Х 13, Х 9М, X 8.

При протекторной защите фонтанных и обсадных труб последние контактируют с пластинами из более электроотрицательных металлов (магния, цинка). В этом случае коррозионному разрушению подвергаются не стальные трубы, а более отрицательные металлы анода. Если для защиты труб и оборудования применяют катодную защиту, то от источника постоянного тока (катодной станции) на трубы или оборудование подают отрицательный потенциал, а на рядом расположенный отрезок трубы (анод) - положительный потенциал, что приводит к разрушению анода и к сохранению без разрушения катода, т.е. металла труб или оборудования.

Эксплуатацию многопластовых газовых и газоконденсатных месторождений ведут двумя способами: 1) на каждый пласт бурят свои скважины (дорогой способ); 2) извлечение газа из двух и более пластов выполняют одной скважиной.

При эксплуатации газовых скважин может быть осложнение - гидратообразование. Пары воды конденсируются и скапливаются в скважине и газопроводах. При определенных условиях каждая молекула углеводородного газа (метан, этан, пропан, бутан) способна связать 6-17 молекул воды, например: СН42О; С2Н82О; С3Н8, 17Н2О. Таким образом, образуются твердые кристаллические вещества, называемые кристаллогидратами. По внешнему виду гидраты напоминают снег или лед. Это устойчивые соединения, при нагревании или понижении давления, быстро разлагающиеся на газ и воду.

Образовавшиеся гидраты могут закупорить скважины, газопроводы, сепараторы, нарушить работу измерительных приборов и регулирующих средств.

Борьба с гидратами, как и с любыми отложениями, ведется, в направлениях их предупреждения и ликвидации. Следует всегда отдавать предпочтение методам предупреждения гидратообразования. Если безгидратный режим не возможен, то применяются ингибиторы гидратообразования: метиловый спирт СН3ОН (метанол), хлористый кальций, гликоли (этиленгликоль, ди- и триэтиленгликоль).