logo
Фрейман А

§ 7. Дымовые составы

Дымовые составы служат для снаряжения пиротехнических из­делий, образующих дымовые облака в воздухе, и применяются для маскировки и сигнализации.

Дым представляет собой скопление чрезвычайно мелких частиц твердых веществ в воздухе.

Размеры твердых частиц дымовой системы измеряются миллион­ными долями сантиметра. Диаметр частиц дыма 10—5 —10—7 см, т. е. иначе от 100 mμ до 1 mμ, где 1 mμ (миллимикрон) равен одной деся­тимиллионной доле сантиметра, или 10-7 см.

Взвесь таких мелких частиц вещества в какой-либо среде по своим свойствам занимает промежуточное место между обычными (истинными) растворами и грубыми суспензиями. Такие системы принадлежат к коллоидным растворам. Взвешенное вещество на­зывается д и с п е р с н о й ф а з о й, а среда, в которой оно на­ходится во взвешенном (диспергированном) состоянии, д и с п е р ­ с и о н- н о й с р е д о й. Если дисперсионной средой является газ, система называется а э р о з о л е м. Следовательно, дым — это аэрозоль, у которого дисперсной фазой являются частицы твердых веществ, а дисперсионной средой — воздух. К аэрозолям относятся и туманы; дисперсная фаза в них находится в жидком состоянии.

Изучение характерных свойств аэрозолей позволяет совершен­ствовать технику получения и использования дыма в военном деле. Некоторые особенности аэрозолей зависят от того, что частицы дисперсной фазы настолько мелки, что все реакции, которые про­исходят в аэрозолях на поверхности соприкосновения реагирующих веществ, отличаются большой скоростью, так как общая поверхность их чрезвычайно велика. Примерами, подтверждающими сказанное,, являются известные случаи взрывов мучной или каменноугольной пыли. Мука и уголь в обычном состоянии горят медленно, а измель­ченные до пыли сгорают с большой скоростью и иногда со взрывом-

Частицы аэрозолей находятся в непрерывном движении; это - происходит по трем причинам: 1) вследствие действия силы тяжести (внешняя сила); 2) вследствие действия сил, развиваемых при уда­рах частиц аэрозоля о молекулы газовой среды; 3) вследствие дви­жения среды.

Действие силы тяжести заставляет частицы аэрозоля падать вниз. Однако действие силы сопротивления молекул воздуха, которые также находятся в движении, изменяет скорость и направление падения частиц в зависимости, главным образом, от вязкости среды и размера частиц аэрозоля. Действие силы тяжести вызывает осе­дание облака в воздухе. Мелкие частицы аэрозоля не оседают вниз по вертикальным направлениям, а совершают беспорядочное дви­жение, которое вызывается ударами этих частиц о молекулы воздуха. В таком хаотическом движении находятся не только частицы аэро­золей, но и других коллоидных систем; это движение называется броуновским. Скорость его увеличивается с уменьшением размеров частиц и с повышением температуры. В результате броуновского движения аэрозоль рассеивается.

Движение среды влияет очень сильно на устойчивость облака. При малых частицах облако рассеивается от воздушных течений раньше, чем успеют подействовать сила тяжести и сила ударов мо­лекул. Особенно быстро аэрозоль рассеивается при большой скорости ветра.

Следовательно, большое значение для устойчивости аэрозоля имеет размер частиц дисперсной фазы. Регулируя их размеры, можно изменить степень устойчивости облака. Размеры частиц определяются опытным путем на основе некоторых физико-хими­ческих законов; при этом обычно принимается, что частица имеет форму шара.

Приведем сравнительно простой способ определения радиуса частиц. В специальной камере образуется облако дыма. На опре­деленный промежуток времени на дно камеры кладут стеклянную пластинку, затем ее помещают под микроскоп, дающий большое увеличение. Микроскоп снабжается особой сеткой с такими точными делениями, чтобы можно было определить размеры наблюдаемых частиц. Сделав большое число таких измерений, выводят среднюю величину радиуса частиц дыма, осевших на пластинке за определен­ное время.

Размеры частиц аэрозоля не постоянны. При движении частицы сталкиваются между собой и некоторые из них укрупняются. Укруп­нение частиц называется к о а г у л я ц и е й. При этом процессе образующиеся крупные частицы выпадают из воздушной среды, и облако разрушается. Укрупненные твердые частицы дымов образуют так называемые хлопья, по-английски flocks, отчего весь процесс называют флокуляцией.

Коагуляция происходит вследствие присутствия на некоторых частицах электрических зарядов. Иногда разные частицы имеют заряды противоположных знаков. В таких случаях коагуляция происходит быстро вследствие взаимного притяжения отрицатель­ных и положительных зарядов. Наоборот, в случае одноименно заряженных частиц они отталкиваются друг от друга; устойчивость аэрозоля в этом случае выше, чем в первом.

Устойчивость увеличивается также в том случае, когда частицы дисперсной фазы аэрозоля окружены пленкой газа, поглощенного аэрозолем. Она как бы защищает частицу аэрозоля от слипания с другой частицей и, задерживая коагуляцию, увеличивает устой­чивость облака.

Весьма важны для применения аэрозолей в военной технике их о п т и ч е с- к и е с в о й с т в а. Если лучи света проходят через аэрозоль, они встречаются с частицами дисперсной фазы. При этом в зависимости от свойств аэрозоля и длины волн световых лучей происходят следующие явления: 1) свет проходит и прелом­ляется, 2) поглощается, 3) отражается, 4) рассеивается.

Если размеры частиц дисперсной фазы превышают длину волны видимых лучей света, свет может частично проходить через них, преломляясь и отражаясь при этом по законам оптики. Поглощение, отдельных частей спектра имеет избирательный характер, т. е. частицы определенного вещества поглощают лучи определенной длины волны. Поэтому некоторые аэрозоли имеют характерную окраску. Аэрозоль будет казаться прозрачным, если количество отраженных им лучей невелико; если же большая часть падающих лучей будет отражаться, аэрозоль будет непрозрачным. При одно­временном наличии отражения и избирательного поглощения части светового потока можно получить непрозрачные окрашенные аэро­золи.

Если частицы дисперсной фазы аэрозоля меньше длины волны видимых лучей света, то происходит частичное поглощение и рас­сеивание света. Мелкие частицы рассеивают падающий свет во все стороны равномерно и сами становятся источником излучения света. Таким образом при прохождении луча света через аэрозоль умень­шается интенсивность света. Это свойство дымов и туманов исполь­зуется в военной технике для маскирующих средств. Для них жела­тельны аэрозоли с минимальной прозрачностью. Обычно з а т е м ­ н я ю щ а я (или «кроющая») способность аэрозоля измеряется уменьшением интенсивности светового потока (в процентах) после прохождения им слоя аэрозоля толщиной в 1 м. Иногда кроющая способность дыма условно выражается величиной 1/L, где L —тол-

щина слоя дыма, полностью затемняющего свет от электрической лампы, которая служит эталоном.

Аэрозоли можно получить дисперсионным и конденсационным методами.

Д и с п е р с и о н н ы й м е т о д заключается в измельчении (диспергировании) вещества до частиц нужных размеров и рас­сеивании их в воздухе. Это достигается разными путями, например, действием взрыва. Малолетучие вещества подвергаются давлению газов, образующихся при взрыве взрывчатого вещества. Сила мгно­венного удара газов распыляет вещество и рассеивает частицы его в воздухе, образуя облако. Этот метод не экономичен и трудно осу­ществим; для получения частиц требуемых размеров затрачивается очень много энергии.

К о н д е н с а ц и о н н ы й м е т о д заключается в соединении молекул вещества до частиц требуемой величины. При этом вещество, находящееся в воздухе в виде пара, переходит из парообразного в твердое или жидкое состояние.

Аэрозоли, получаемые конденсационным способом, имеют более мелкие частицы, чем получаемые диспергированием. Конденсацион­ный метод более распространен, чем дисперсионный. Аэрозоли по этому способу получают двумя путями: а) охлаждением паров вещества, б) конденсацией в результате химической реакции.

Для конденсации паров вещества необходимо, чтобы пары пе­ресыщали пространство. Следовательно, необходимо получить сна­чала пересыщенный пар, который затем конденсируется.

К о н д е н с а ц и я о х л а ж д е н и е м п а р о в. Пары ве­щества можно охлаждать по всему объему пара, либо по его поверх­ности.

Для объемного охлаждения пара используется способ быстрого увеличения его объема, без притока тепла извне. Работа, расходуе­мая паром на расширение, происходит за счет запаса тепла, имею­щегося у пара; при этом соответственно понижается его темпера­тура и происходит частичная конденсация.

Поверхностное охлаждение пара происходит при соприкоснове­нии его с холодными телами, например, с холодным воздухом.

Практически для получения аэрозолей часто используется воз­гонка, т. е. испарение вещества и конденсация его паров при со­прикосновении с холодным воздухом.

К о н д е н с а ц и я в р е з у л ь т а т е х и м и ч е с к о й р е ­ а к ц и и. Для получения аэрозоля необходимо, чтобы в результате химической реакции образовались пересыщенные пары вещества, которые затем могут конденсироваться. Это происходит при реак­ции некоторых веществ с водой, например, при присоединении мо­лекул воды к химическому соединению (реакция гидратации) или при разложении химического соединения при взаимодействии с во­дой (реакция гидролиза).

Для образования аэрозолей используются также реакции го­рения и некоторые другие реакции.