Термитные составы
В основе применения термитных составов лежат так называемые термитные реакции.
Термитная реакция происходит между окислителем и горючим, но условия ее отличаются от условий реакции в обычных пиротехнических двойных смесях.
Под термитными подразумеваются экзотермические реакции между металлом и окислом другого металла, когда свободный металл окисляется за счет кислорода окисла. Следовательно, в термитной реакции окислителем служит окисел металла, а горючим — свободный металл.
Термитные реакции отличаются следующими свойствами от реакций, происходящих в других пиротехнических составах:
1) начальные и конечные продукты реакции — твердые вещества;
2) для возбуждения термитной реакции требуется мощный тепловой импульс (реакция начинается при высокой температуре);
3) при термитной реакции развивается высокая температура, что объясняется, главным образом, отсутствием газообразных продуктов, при наличии которых обычно теряется много тепла;
4) теплота реакции настолько велика, что продукты ее (шлак) расплавляются и могут растекаться. Это свойство шлака очень полезно в зажигательном составе, так как расплавленные шлаки увеличиваю? радиус его действия.
Термитные реакции, как и другие в пиротехнике, после возбуждения их начальным импульсом протекают без постороннего притока тепла. Скорость термитных реакций обычно велика.
Главную роль в термитном процессе играет горючее. Теплота сгорания горючего определяет тепловой эффект реакции. Горючее вещество в термитных реакциях должно образовывать окислы, легко плавящиеся при температуре реакции, что необходимо для получения расплавленного шлака. Однако температура кипения окисла должна быть выше температуры реакции, чтобы не было парообразования окисла. Парообразование окисла понизит температуру реакции, так как потребуется излишнее тепло на процесс парообразования, и часть тепла уйдет с парами.
Для умеренной скорости реакции требуется, чтобы и самое горючее (металл) не переходило в парообразное состояние в процессе реакции. Таким образом температура кипения металла должна по возможности превышать температуру реакции.
Наиболее подходит для термитных реакций алюминий. Реакция его окисления за счет кислорода окислов некоторых металлов была открыта в 1894 г. Гольдшмидтом и широко используется в технике. Вследствие большой теплоты сгорания алюминий способен отнимать кислород от окислов большинства металлов.
Окислитель (т. е. окисел) должен легко отдавать кислород, затрачивая на свое разложение минимальное количество тепла. В таком случае реакция проходит с большим выделением тепла. В результате восстановления окисла должно получиться легкоплавкое, но труднолетучее вещество (как и в результате окисления горючего — металла).
Для практического использования термитных реакций необходимо, чтобы компоненты были доступны и сравнительно недороги.
Наиболее подходящими окислителями являются окислы железа. Железо, образующееся в результате реакции, расплавляется при температуре процесса. Скорость реакции железоалюминиевого термита регулируется подбором величины зерен компонентов.
Обычно для зажигательного состава применяется смесь алюминия (24—25%) с окислами железа (75—76%) Fe3O4 и Fe2O3, называемая железным термитом.
Термит воспламеняется при высокой температуре; для его воспламенения используют специальные составы. Горящий термит с трудом поддается тушению. Реакция горения термита может продолжаться даже под водой. Термит не чувствителен к механическим воздействиям и безопасен в обращении.
В процессе реакции образуются железо и окись алюминия в расплавленном, огненно жидком состоянии; эти расплавленные шлаки растекаются по поджигаемой поверхности, создавая очаги пожара.
Температура реакции железо алюминиевого термита приблизительно 2500°. Точно она не определена, главным образом, потому, что отсутствуют данные о теплоемкости продуктов реакции при высоких температурах. Приближенными расчетами, исходя из реакции горения термита:
3 Fe3O4 + 8 AI 9 Fe + 4 AI2O3 + (772,5 кг-кал ± 3),
найдено, что температура ее может достигать 3200 ± 200°. Однако предполагается, что в процессе реакции происходит парообразование самого алюминия, поэтому температура реакции снижается до температуры кипения алюминия, т. е. до 2500—-2300°.
Опытные определения температуры реакции оптическими методами дают 2250—2300°.
При применении термита в качестве зажигательного состава выявились некоторые его недостатки, например, трудность воспламенения и недостаточный радиус действия.
Для улучшения свойств термита к нему добавлялись различные вещества. В английских авиабомбах применялся следующий состав (в проц.):
Окалины железа ………………………............. 50
Алюминия ..........………………………………..... 24
Нитрата бария ......... ……………………. .... 26
Применением нитрата бария предполагалось повысить эффективность термита за счет увеличения количества кислорода, но это дало отрицательные результаты.
В некоторых составах к термиту добавлялись различные цементаторы, чтобы придать составу механическую прочность, например (в проц.):
Окиси железа .……………………….............. 76
Алюминия ............…………………………..... 22
Жидкого стекла ..……………………............. 2
Количество жидкого стекла может повышаться до 15%. Смесь термита с 15% жидкого стекла высушивается до полного удаления воды, и полученное вещество оказывается нечувствительным к удару.
Из органических цементаторов применяется целлулоид (в растворе эфира), который после высушивания смеси участвует в горении с образованием пламени. В некоторых случаях для связывания термитной массы применяются смолы, пек и другие вещества. Однако, прибавляя к термиту горючие связывающие вещества и окислители, дающие в результате реакции газообразные продукты, можно снизить температуру реакции, а это ухудшит зажигательное действие термита.
Для увеличения радиуса действия термита он применяется в смеси с различными нефтепродуктами и горючими маслами (например с «сгущенным нефтемаслом», предложенным американскими химиками). При горении смеси термита со сгущенным маслом получается
столб пламени, высотой до 4 м, горящее масло растекается на большую площадь.
Чтобы затруднить тушение пожаров, вызванных термитными зажигательными средствами, к составам иногда добавляется металлический натрий, который вызывает взрывы при тушении состава водой.
Для снаряжения зажигательных средств термитные составы прессуются под большим давлением. Этим достигается действие большой массы термита, занимающей сравнительно небольшой объем. Чаще всего состав прессуется в металлическую оболочку, чем обеспечивается механическая прочность изделия.
- Краткий курс пиротехники
- Глава 1 введение
- § 1. Основные понятия
- § 2. Краткие исторические сведения
- §3. Современное состояние пиротехники
- § 4. Классификация пиротехнических изделий
- Глава II основы теории пиротехники
- § 1. Общие сведения о пиротехнических составах и их компонентах
- § 2. Реакции горения
- § 3. Составление основных пиротехнических смесей
- § 4. Образование пиротехнических составов
- § 5. Начальный импульс и воспламенение пиротехнических составов
- § 6. Чувствительность пиротехнических составов
- § 7. Скорость горения пиротехнических составов
- § 8. Изучение продуктов реакции горения пиротехнических составов
- § 9. Тепловой эффект горения пиротехнических составов
- § 10. Стойкости пиротехнических составов
- § 11. Взрывчатые свойства пиротехнических составов
- § 12. Классификация пиротехнических составов
- Контрольные вопросы к главе II
- Глава III сырье и вспомогательные материалы для производства пиротехнических изделий
- § 1. Общие требования к сырью
- § 2. Окислители
- Хлораты
- Перхлораты
- Нитраты
- Окислы металлов
- Окислители других групп
- § 3. Горючие и цементирующие вещества
- Неорганические горючие
- Органические горючие
- § 4. Цветнопламенные добавки
- Добавки, улучшающие окраску пламени
- § 5. Красители дымов
- § 6. Вспомогательные материалы и полуфабрикаты
- Контрольные вопросы к главе III
- Глава IV пиротехнические составы
- § 1. Классификация составов
- § 2. Общие сведения о свойствах пламенных составов
- § 3. Осветительные составы
- Фотоосветительные составы (фотовспышки)
- 1. Молибденовой кислоты …………….…....... 70
- 2. Вольфрамовой кислоты …………………...... 75
- Определение силы света (фотометрия)
- § 4. Сигнальные составы ночного действия
- 1. Хлората калия ......…………………..... 60
- 2. Хлората калия .....…………………...... 60
- § 5. Трассирующие составы
- 1. Магния………………………………............. 5 — 25
- 2. Магния .......………………………………….......... 20
- § 6. Зажигательные составы
- Термитные составы
- Составы с кислородсодержащими солями
- Зажигательные вещества
- § 7. Дымовые составы
- § 8. Маскирующие дымы
- § 9. Сигнальные дымовые составы
- 1. Хлората калия. ……………………….………………........... 20
- § 10. Фейерверочные составы
- Сильные составы
- 1. Пороховой мякоти....……………………………………...... 100
- 2. Пороховой мякоти ....………………………………………..... 100
- Слабые составы
- §11. Вспомогательные воспламенительные составы
- Контрольные вопросы к главе IV
- Глава V
- § 1. Осветительные средства
- Осветительные средства ближнего действия
- Осветительные средства дальнего действия
- Осветительные средства, применяемые авиацией
- § 2. Зажигательные средства
- Зажигательные пули
- Зажигательные ручные гранаты
- Зажигательные снаряды
- Зажигательные авиационные бомбы
- § 3. Трассирующие средства
- Трассирующие пули
- Трассирующие снаряды
- § 4. Сигнальные средства
- Сигнальные средства ночного действия
- Сигнальные средства дневного действия
- § 5. Имитационные средства
- Контрольные вопросы к главе V
- Глава VI фейерверочные изделия
- § 1. Общая характеристика фейерверочных изделий
- § 2. Низовые фейерверочные фигуры
- § 3. Средние фейерверочные фигуры
- § 4. Верховые фейерверочные фигуры
- Контрольные вопросы к главе VI
- Сушка компонентов
- Измельчение компонентов
- Просеивание
- § 2. Приготовление пиротехнических составов
- § 3. Прессование
- § 4. Подготовка оболочек для объектов и вспомогательные операции
- § 5. Снаряжение объектов
- § 6. Контроль готовой продукции
- § 7 Общие правила техники безопасности при работе на пиротехнических производствах
- § 8. Хранение пиротехнических средств и уничтожение остатков и брака
- Контрольные вопросы к главе VII
- Литература
- Глава I Введение