Глава 2. Разведка и разработка нефтяных и газовых месторождений 69
Р отор передает вращательное движение бурильному инструменту, поддерживает на весу колонну бурильных или обсадных труб и воспринимает реактивный крутящий момент колонны, создаваемый забойным двигателем. Ротор состоит из станины, во внутренней полости которой установлен на подшипнике стол с укрепленным зубчатым венцом, вала с цепным колесом с одной стороны и конической шестерней с другой, кожуха с наружной рифленой поверхностью, вкладышей и зажимов для ведущей трубы. Во время работы вращательное движение от лебедки с помощью цепной передачи сообщается валу и преобразуется в поступательное вертикальное движение ведущей трубы, зажатой в роторном столе зажимами.
Силовой привод обеспечивает функционирование всей буровой установки — он снабжает энергией лебедку, буровые насосы и ротор.
Привод буровой установки может быть дизельным, электрическим, дизель-электрическим и дизель-гидравлическим. Дизельный привод применяют в районах, не обеспеченных электроэнергией необходимой мощности. Электрический привод от электродвигателей переменного и постоянного тока отличается простотой в монтаже и эксплуатации, высокой надежностью и экономичностью, но применим только в электрифицированных районах. Дизель-электрический привод из дизеля, который вращает генератор, питающий, в свою очередь, электродвигатель. Дизель-гидравлический привод состоит из двигателя внутреннего сгорания и турбопередачи. Последние два типа привода автономны, но в отличие от дизельного не содержат громоздких коробок перемены передач и сложных соединительных частей, имеют удобное управление, позволяют плавно изменять режим работы лебедки или ротора в широком диапазоне.
Суммарная мощность силового привода буровых установок составляет от 1000 до 4500 кВт. В процессе бурения она распределяется на привод буровых насосов и ротора. При проведении спускоподъемных операций основная энергия потребляется лебедкой, а остальная часть — компрессорами, вырабатывающими сжатый воздух, используемый в качестве источника энергии для автоматического бурового ключа, подвесного бурового ключа, пневматического клинового захвата и др.
Циркуляционная система буровой установки служит для сбора и очистки отработанного бурового раствора, приготовления новых его порций и закачки очищенного раствора в скважину. Она включает в себя систему отвода использованного раствора от устья скважины, механические средства отделения частичек породы (вибросито, гид-роциклоны), емкости для химической обработки, накопления и отстоя очищенного раствора, шламовый насос, блок приготовления свежего раствора и буровые насосы для закачки бурового раствора по нагнетательному трубопроводу в скважину.
К привышечным сооружениям относятся:
помещение для размещения двигателей и передаточных механизмов лебедки;
насосное помещение для размещения буровых насосов и их двигателей;
приемные мостки, предназначенные для транспортировки бурового технологического оборудования, инструмента, материалов и запасных частей;
запасные резервуары для хранения бурового раствора;
трансформаторная площадка для установки трансформатора;
площадка для размещения механизмов по приготовлению бурового раствора и хранения сухих материалов для него;
стеллажи для размещения труб.
В качестве забойных двигателей при бурении используют турбобур, электробур и винтовой двигатель, устанавливаемые непосредственно над долотом.
Турбобур — это многоступенчатая турбина (число ступеней до 350), каждая ступень которой состоит из статора, жестко соединенного с корпусом турбобура, и ротора, укрепленного на валу турбобура. Поток жидкости, стекая с лопаток статора, натекает на лопатки ротора, отдавая часть своей энергии на создание вращательного момента, снова натекает на лопатки статора и т. д. Хотя каждая ступень турбобура развивает относительно небольшой момент, благодаря их большому количеству, суммарная мощность на валу турбобура оказывается достаточной, чтобы бурить самую твердую породу.
При турбинном бурении в качестве рабочей используется промывочная жидкость, двигающаяся с поверхности земли по бурильной колонне к турбобуру. С валом турбобура жестко соединено долото. Оно вращается независимо от бурильной колонны.
При бурении с помощью электробура питание электродвигателя осуществляется через кабель, укрепленный внутри бурильных труб. В этом случае вместе с долотом вращается лишь вал электродвигателя, а его корпус и бурильная колонна остаются неподвижными.
Основными элементами винтового двигателя являются статор и ротор. Статор изготовлен нанесением специальной резины на внутреннюю поверхность стального корпуса. Внутренняя поверхность статора имеет вид многозаходной винтовой поверхности. А ротор изготовляют из стали в виде многозаходного винта. Количество винтовых линий на одну меньше, чем у статора Ротор расположен в статоре с эксцентриситетом. Благодаря этому, а также вследствие разницы чисел заходов в винтовых линиях статора и ротора их контактирующие поверхности образуют ряд замкнутых полостей — шлюзов между камерами высокого давления у верхнего конца ротора и пониженного давления у нижнего. Шлюзы перекрывают свободный ток жидкости через двигатель, а самое главное — именно в них давление жидкости создает вращающий момент, передаваемый долоту.
Инструмент, используемый при бурении, подразделяется на основной (долота) и вспомогательный (бурильные трубы, бурильные замки, центраторы).
Как уже отмечалось, долота бывают лопастные, шарошечные, алмазные и твердосплавные (рис. 2.2.4).
Рис. 2.2.4а. Лопастное долото: 1 — головка с присоединительной резьбой; 2 — корпус; 3 — лопасть; 4 — промывочное отверстие; 5—твердосплавное покрытие; 6 — режущая кромка
Лопастные долота (рис. 2.2.4а) выпускаются трех типов: двухлопастные, трехлопастные и многолопастные. Под действием нагрузки на забой их лопасти врезаются в породу, а под влиянием вращающего момента — скалывают ее. В корпусе долота имеются отверстия, через которые жидкость из бурильной колонны направляется к забою скважины со скоростью не менее 80 м/с. Лопастные долота применяются при бурении в мягких высокопластичных горных породах с ограниченными окружными скоростями (обычно при роторном бурении).
-
72
- Глава 1. Нефть и газ в истории
- 1.1. История развития и современное состояние нефтегазового бизнеса
- 1.1.1. Об истории развития мировой индустрии нефти и газа
- 1.1.2. Тенденции развития энергетики
- Глава 1. Нефть и газ в истории и развитии цивилизации 9
- М ировые запасы газа, 2003 г. -174,2 трлн куб. М*
- Глава 1. Нефть и газ в истории и развитии цивилизации 11
- Мировые запасы газа, 2003 г. -174,2 трлн куб. М*
- Мировые запасы нефти, 2003 г. - 200,7 млрд т**
- Глава 1. Нефть и газ в истории и развитии цивилизации 13
- Глава 1. Нефть и газ в истории и развитии цивилизации 15
- 1.1.3. Технологический прогресс в сфере тэк
- Глава 1. Нефть и газ в истории и развитии цивилизации 17
- Глава 1. Нефть и газ в истории и развитии цивилизации 19
- Глава 1. Нефть и газ в истории и развитии цивилизации 21
- Глава 1. Нефть и газ в истории и развитии цивилизации 23
- Глава 1. Нефть и газ в истории и развитии цивилизации 25
- Глава 1. Нефть и газ в истории и развитии цивилизации 27
- 1.2. Место и роль нефтегазового комплекса в современной мировой и российской экономике
- 1.2.2. Текущее состояние и динамика развития запасов и добычи нефти и газа
- Глава 1. Нефть и газ в истории и развитии цивилизации 29
- Глава 1. Нефть и газ в истории и развитии цивилизации 31
- Глава 1. Нефть и газ в истории и развитии цивилизации 33
- Глава 1. Нефть и газ в истории и развитии цивилизации 35
- 1.2.3. Современные тенденции в экспорте российской нефти и газа
- Глава 1. Нефть и газ в истории и развитии цивилизации 37
- 1.2.4. Текущее состояние и развитие нефтегазовой трубопроводной транспортной системы и трубопроводного строительства
- Глава 1. Нефть и газ в истории и развитии цивилизации 39
- Глава 1. Нефть и газ в истории и развитии цивилизации 41
- Глава 1. Нефть и газ в истории и развитии цивилизации 43
- 1.2.5. Проблемы современного состояния нефтегазостроительного комплекса
- Глава 1. Нефть и газ в истории и развитии цивилизации 45
- 1.2.6. Основы законодательно-нормативного обеспечения нефтегазового бизнеса
- Глава 1. Нефть и газ в истории и развитии цивилизации 47
- Глава 1. Нефть и газ в истории и развитии цивилизации 49
- Глава 2. Разведка и разработка нефтяных и газовых месторождений
- 2.1. Основы нефтегазопромысловой геологии
- 2.1.1. Состав и формы залегания горных пород. Состав нефти и газа. Образование месторождений нефти и газа
- Глава 2. Разведка и разработка нефтяных и газовых месторождений 51
- Глава 2. Разведка и разработка нефтяных и газовых месторождений 53
- 2.1.2. Методы поиска и разведки нефтяных и газовых месторождений
- Глава 2. Разведка и разработка нефтяных и газовых месторождений 55
- Глава 2. Разведка и разработка нефтяных и газовых месторождений 57
- 2.1.3. Этапы поисково-разведочных работ
- Глава 2. Разведка и разработка нефтяных и газовых месторождений 59
- 2.2. Бурение нефтяных и газовых скважин
- Глава 2. Разведка и разработка нефтяных и газовых месторождений 61
- 2.2.2. Классификация способов бурения
- Глава 2. Разведка и разработка нефтяных и газовых месторождений 63 Рис. 2.2.1. Классификация способов бурения скважин на нефть и газ
- 2.2.3. Буровые установки, оборудование и инструмент
- Глава 2. Разведка и разработка нефтяных и газовых месторождений 65
- Глава 2. Разведка и разработка нефтяных и газовых месторождений 67
- Глава 2. Разведка и разработка нефтяных и газовых месторождений 69
- Часть I. Основынефтегазового-дела
- Глава 2. Разведка и разработка нефтяных и газовых месторождений 73
- 2.2.4. Цикл строительства скважины
- Глава 2. Разведка и разработка нефтяных и газовых месторождений 75
- Часть I. Основы нефтегазового дела
- Глава 2. Разведка и разработка нефтяных и газовых месторождений 77
- Глава 2. Разведка и разработка нефтяных и газовых месторождений 79
- 2.2.5. Промывка скважин
- 2.3. Добыча нефти и газа
- 2.3.1. Этапы и режимы добычи нефти и газа
- Глава 2. Разведка и разработка нефтяных и газовых месторождений 81
- Часть I. Основы нефтегазового дела
- Глава 2. Разведка и разработка нефтяных и газовых месторождений 83
- Глава 2. Разведка и разработка нефтяных и газовых месторождений 85
- Часть I. Основы нефтегазового дела
- Глава 2. Разведка и разработка нефтяных и газовых месторождений 87
- Глава 2. Разведка и разработка нефтяных и газовых месторождений 89
- Глава 2. Разведка и разработка нефтяных и газовых месторождений 91
- 2.3.2. Эксплуатация нефтяных и газовых скважин
- Часть I. Основы нефтегазового дела
- Глава 2. Разведка и разработка нефтяных и газовых месторождений 93
- Часть I. Основы нефтегазового дела
- Глава 2. Разведка и разработка нефтяных и газовых месторождений 95
- Часть I. Основы нефтегазового дела
- Глава 2. Разведка и разработка нефтяных и газовых месторождений 97
- Глава 2. Разведка и разработка нефтяных и газовых месторождений 99
- 2.3.3. Системы сбора нефти на промыслах