logo
Posobie_PGM

8.4. Характеристическая функция течения при совместном действии источника и стока

Рис. 8.5. Схема расположения источника 01 и стока 02

В разделе 7.1.6. подробно исследовалось семейство изобар в случае потока от нагнетательной скважины к эксплуатационной. О линиях тока было замечено, что они образуют семейство окружностей, ортогональных изобарам. Уточним вопрос об особенностях семейства линий тока на основе метода теории функций комплексного переменного.

Сохраняя прежние обозначения и придерживаясь рис. 8.5, получим на основании формул (8.27) и (8.28) характеристическую функцию течения от нагнетательной скважины к эксплуатационной

. (8.29)

где r1 и r2– расстояния некоторой точки М до источника 01 и стока 02 , соответственно, θ1 и θ2 – соответствующие полярные углы; М – модуль массового дебита стока и источника.

Отделяя в (8.29) действительную часть от мнимой, получим

, (8.30)

Отсюда:

, (8.31)

Из (8.31) следует, что уравнение семейства изобар запишется в виде

,

где С постоянное.

Уравнение линий тока получается из второй формулы (8.31):

θ1-θ2*, (8.32)

где С* – постоянное.

Рассмотрим уравнение (8.32). Выразим θ1 и θ2 через координаты точки М (х, у) в соответствии с рис. 8.23.

.

Подставив значения θ1 и θ2 в уравнение (8.32) и учитывая, что а2-a1=2a, будем иметь после несложных алгебраических преобразований:

(8.33)

где С** - новая постоянная.

Из (8.33) видно, что центры окружностей имеют координаты . Так как абсцисса центров окружностей не зависит от С**, то она одинакова для всех окружностей и, следовательно, все окружности расположены на прямой , То есть на прямой,параллельной оси , делящей расстояние между стоком и источником пополам. Радиус окружностей .

Рис. 8.4. Фильтрационное поле источника и стока

Отсюда абсциссы точек пересечения

то есть линии тока проходят через сток и источник.

Таким образом, линии тока представляют собой окружности, проходящие через центры обеих скважин, и ортогональны окружностям - изобарам. Центры всех этих окружностей расположены на прямой (эквипотенциальной линии), делящей расстояние между скважинами пополам (рис. 8.6).