7.1.1. Фильтрационный поток от нагнетательной скважины к эксплуатационной
Рис. 7.3. Схема расположения источника 01 и стока 02
Проведём ось 0х через точки О1 и О2 таким образом, чтобы точка О1 находилась от начала координат 0 на расстоянии а1, а точка О2 на расстоянии а2 (рис. 7.3).
По формуле (7.2) определим потенциальную функцию потока. При этом учтем знаки дебитов: источник G 1= - G, а сток G 2= + G. После подстановки получим
, (7.5)
где r1 и r2 – расстояния любой точки пласта до стока и источника, соответственно.
Уравнение изобар (7.4) при этом будет иметь вид
(7.6)
Рис. 7.4. Фильтрационное поле источника и стока
Семейство линий тока ортогонально изобарам и, следовательно, в данном случае тоже окружности. Все линии тока проходят через сток и источник. Центры всех окружностей линий тока расположены на прямой, делящей расстояние между стоком и источником пополам (рис.7.4).
Массовый дебит эксплуатационной и нагнетательной скважин при их совместной деятельности определяется на основе соотношения (7.5), расписанного для каждой скважины при учете отношений радиусов (рис.7.3): на контуре эксплуатационной скважины – ; на контуре нагнетательной скважины –. Решая, полученную систему уравнений, имеем
. (7.7)
Массовая скорость фильтрации в любой точке пласта M (рис.7.2) находится по правилу суперпозиции сложения векторов скорости от действия источника и стока
Модуль массовой скорости i-ой скважины равен
, (7.8)
/,/
Для поддержания пластового давления часто используется нагнетание воды в пласт. Определим для однородной несжимаемой жидкости время движения частицы по кратчайшему пути между нагнетательной и эксплуатационной скважинами, то есть по оси 0х. При жестководонапорном режиме решается при этом вопрос о времени, прошедшем от начала закачки воды в пласт до начала её прорыва в эксплуатационную скважину.
Чтобы решить указанную задачу, выразим скорость в (7.8) через производную расстояния по времени и, поместив начало координат в сток О1, проинтегрируем полученное уравнение по х от х0 до х. Тогда время движения частицы от некоторой точки х0 до точки х определится зависимостью
. (7.9)
Время обводнения Т, т.е. время прохождения частицы расстояния О1О2= 2а определится из (7.9), если принять х=0; х0=2а
, (7.10)
где Q - объёмный дебит.
Зная Т, можно найти площадь обводнения , приравнивая объёмы TQ и mh. Откуда. (7.11)
Анализ формул (7.9) и (7.10) показывает, что расстояние, пройденное частицей за время Т от нагнетательной скважины до эксплуатационной, вдвое больше расстояния пройденного другой частицей за это же время в положительном направлении оси х.
- Федеральное агентство по образованию
- «Томский политехнический университет»
- Подземная гидромеханика
- 1.1. Понятие о моделировании
- 1.2. Модели фильтрационного течения, флюидов и коллекторов
- 1.2.1. Модели фильтрационного течения
- 1.2.2. Модели флюидов
- 1.2.3. Модели коллекторов
- 1.2.4. Характеристики коллекторов
- 2. Дифференциальные уравнения фильтрации
- 2.1. Скорость фильтрации
- 2.2. Общая система уравнений подземной гидромеханики
- 2.3. Закон Дарси (линейный закон фильтрации)
- 2.3.1. Пористая среда
- 2.3.2. Трещинная среда
- 2.4. Уравнения потенциального движения для пористой среды
- 2.5. Уравнения фильтрации для трещинно-пористой среды
- 2.6. Начальные и граничные условия
- 2.6.1. Начальные условия
- 2.6.2. Граничные условия
- 2.7. Замыкающие соотношения
- 2.7.1. Зависимость плотности от давления
- 2.7.2. Зависимость вязкости от давления
- 2.7.3. Зависимость пористости от давления
- 2.7.4. Зависимость проницаемости от давления
- 3. Установившаяся потенциальная одномерная фильтрация
- 3.1. Виды одномерных потоков
- 3.1.1. Прямолинейно-параллельный поток
- 3.1.2. Плоскорадиальный поток
- 3.1.3. Радиально-сферический поток
- 3.2. Исследование одномерных течений
- 3.2.1. Задача исследования
- 3.2.2. Общее дифференциальное уравнение
- 3.2.3. Потенциальные функции
- 3.2.4. Анализ основных видов одномерного течения
- 3.2.5. Анализ одномерных потоков при нелинейных законах фильтрации
- 3.3. Фильтрация в неоднородных средах
- 3.4. Приток к несовершенным скважинам
- 3.4.1. Виды и параметры несовершенств скважин
- 3.4.2. Исследования притока жидкости к несовершенной скважине
- 3.5. Влияние радиуса скважины на её производительность
- 4. Нестационарная фильтрация упругой жидкости и газа
- 4.1. Упругая жидкость
- 4.1.1. Понятия об упругом режиме пласта
- 4.1.2. Основные параметры теории упругого режима
- 4.1.3. Уравнение пьезопроводности
- 4.1.4. Приток к скважине в пласте неограниченных размеров
- 4.1.5. Приток к скважине в пласте конечных размеров в условиях упруговодонапорного и замкнутоупругого режимов
- 4.1.7. Определение коллекторских свойств пласта по данным исследования скважин нестационарными методами
- 4.2. Неустановившаяся фильтрация газа в пористой среде
- 4.2.1. Уравнение Лейбензона
- 5.Основы теории фильтрации многофазных систем
- 5.1. Связь с проблемой нефтегазоотдачи пластов
- 5.2. Основные характеристики многофазной фильтрации
- 5.3. Исходные уравнения многофазной фильтрации
- 5.4. Потенциальное движение газированной жидкости
- 5.5. Фильтрация водонефтяной смеси и многофазной жидкости
- 5.6. Одномерные модели вытеснения несмешивающихся жидкостей
- 5.6.1. Задача Баклея Леверетта и ее обобщения
- 5.6.2. Задача Рапопорта – Лиса
- 6.Основы фильтрации неньютоновских жидкостей
- 6.1. Реологические модели фильтрующихся жидкостей и нелинейные законы фильтрации
- 6.2. Одномерные задачи фильтрации вязкопластичной жидкости
- 6.3. Образование застойных зон при вытеснении нефти водой
- 7. Установившаяся потенциальная плоская (двухмерная) фильтрация
- 7.1. Метод суперпозиции (потенциалов)
- 7.1.1. Фильтрационный поток от нагнетательной скважины к эксплуатационной
- 7.1.2. Приток к группе скважин с удаленным контуром питания
- 7.1.3. Приток к скважине в пласте с прямолинейным контуром питания
- 7.1.4. Приток к скважине, расположенной вблизи непроницаемой прямолинейной границы
- 7.1.5. Приток к скважине в пласте с произвольным контуром питания
- 7.1.6. Приток к бесконечным цепочкам и кольцевым батареям скважин
- 7.2. Метод эквивалентных фильтрационных сопротивлений (метод Борисова)
- 7.3. Интерференция несовершенных скважин.
- 7.3.1. Взаимодействие скважин в анизотропном пласте
- 7.3.2. Взаимодействие скважин при нестационарных процессах
- 8. Решение плоских задач фильтрации методами теории функций комплексного переменного
- 8.1.Общие положения теории функций комплексного переменного
- 8.2. Характеристическая функция, потенциал и функция тока
- 8.3. Характеристические функции некоторых основных типов плоского потока
- 8.4. Характеристическая функция течения при совместном действии источника и стока
- 8.5. Характеристическая функция течения для кольцевой батареи скважин
- 9. Основы численного моделирования
- 8.1. Сущность математического моделирования
- 9.2. Основные проблемы гидродинамического моделирования
- Глава 1
- Глава 2,3
- Глава 4
- Глава 5
- Глава 6
- Глава 7
- Глава 9
- 3.1.1. Прямолинейно-параллельный поток 37