2.1.2. Динамические методы.
а). Наиболее используемый динамический метод - маятниковый. Для абстрактного объекта - математического маятника - период колебаний
|
где - длина маятника, - ускорение силы тяжести, - максимальное значение угла отклонения маятника от вертикали. Эта формула остается справедливой и для реального объекта - физического маятника, если в качестве взять так называемую приведенную длину где - момент инерции маятника, - масса, - расстояние от центра тяжести до оси вращения. При малых формула для периода принимает вид Точность определения периода возрастает при увеличении времени наблюдения за колебаниями маятника. Для абсолютных измерений ускорения силы тяжести необходимо измерять длину маятника. Зная и на исходной точке, а также на i-той точке, можно выполнить относительные измерения в двух точках: по формуле т.е. в относительных измерениях длину определять не надо.
Хотя маятниковые приборы и подвержены воздействию температуры, влажности и других факторов, они характеризуются очень медленным и плавным сползанием нуль-пункта (изменением зависимости показаний в одной и той же точке от времени, вызванным старением системы).
При измерениях маятниковыми приборами в движении, например, при морских съемках, влияние качки можно существенно снизить, если применять несколько маятников, закрепленных на одном основании. В этом случае их колебания обычно сводят к колебаниям одного эмпирического маятника, используя сложный математический аппарат.
Погрешность абсолютных измерений ускорения силы тяжести маятниковыми приборами можно довести до 1 - 3 мГал, а относительных - при наземных исследованиях - до 0.1 мГал, при морских съемках - до 5 - 10 мГал.
б). Определение абсолютного значения ускорения силы тяжести можно проводить методом свободного падения, когда измеряется время свободного падения тела и расстояние, пройденное телом. Измерения отличаются большой трудоемкостью и выполняются на обсерваториях, где точность в определении можно довести до 0,01 мГал.
в). В настоящее время известны методы абсолютных и относительных измерений силы тяжести, основанные на изучении колебаний струн. В них измеряется частота колебаний струны, ее длина и масса. В результате можно рассчитать или .
- Б7. Потенциал силы тяжести и его высшие производные. Нормальные значения вторых производных. Потенциал силы тяжести.
- 1.1.3. Производные потенциала силы тяжести.
- Измеряемые в гравиразведке параметры.
- 2.1.2. Динамические методы.
- Б9. Нормальное гравитационное поле Земли и его формулы. Нормальное значение силы тяжести.
- Редукции силы тяжести.
- 1.2.3. Аномалии силы тяжести.
- 4.1.2. Единицы измерений.
- 4.1.3. О происхождении магнитного поля Земли.
- Нормальное геомагнитное поле.
- 4.1.5. Аномальные геомагнитные поля.
- 4.1.6. Вариации земного магнетизма.
- Намагниченность горных пород и руд.
- 4.2.2. Магнитная восприимчивость горных пород и руд.
- Остаточная намагниченность пород и руд.
- 5.1.2. Оптико-механические магнитометры.
- 5.1.3. Феррозондовые магнитометры.
- 5.1.4. Ядерно-прецессионные (протонные) магнитометры.
- 6.1. Качественная интерпретация данных магниторазведки.
- 6. 2. Количественная интерпретация данных магниторазведки.
- 20. Электрические св-ва горных пород.
- 21. Аппаратура для разведки постоянным током.
- 25. Палеточные способы интерпретации трехслойных кривых зондирований.
- Метод РадиоКип
- Дипольное электромагнитное профилирование (дэмп)
- Дистанционные индукционные зондирования (диз)