10.3 Различия вязкостей нефти и воды как фактор, осложняющий процесс вытеснения нефти. Параметр безразмерной вязкости μ0, его влияние на характер выработки запасов.
Безразмерная вязкость – величина характеризующая различие физических свойств нефти и вытесняющего агента (в основном воды).
Определяется отношением вязкости нефти к вязкости вытесняющего реагента (в частности воды).
, (10.25)
где: µ0 – безразмерная вязкость;
µн – вязкость нефти;
µв – вязкость воды.
В гидрофильных пористых средах (θ ≤ 30°) полнота извлечения нефти определяется прежде всего действием капиллярных сил. При малых скоростях фильтрации вода капиллярно впитывается в мелкие норовые каналы, тогда как более крупные поровые каналы остаются не охваченными вытесняющим агентом. В рассматриваемом случае капиллярные силы ухудшают условия вытеснения нефти, поскольку оставшаяся в крупных порах несмачивающая фаза находится в виде изолированных глобул или насыщает сравнительно высокопроницаемые участки однородного пласта, которые со всех сторон охвачены нагнетаемой водой. При этом оставшаяся в таком виде в норовом пространстве нефть при практически возможных скоростях фильтрации остается неподвижной.
Исходя из теоретических соображений, при повышении скорости фильтрации в крупных порах под действием градиента гидродинамического давления до скорости капиллярного проникновения в мелкие поры воды должна наступить оптимальная или критическая скорость, при которой в любом сечении линейного пористого образца фронт воды независимо от размеров поровых каналов перемещается с одной и той же скоростью. При этом должна достигаться максимальная безводная нефтеотдача.
При дальнейшем повышении скорости вода более активно проникает в крупные поровые каналы, что должно привести к расчленению нефтяной фазы на макроцелики с последующим их капиллярным диспергированием на более мелкие целики. Безводная нефтеотдача при этом должна уменьшаться.
По литературным данным отмечается две типичные зависимости безводной нефтеотдачи от скорости фильтрации: а) безводная нефтеотдача увеличением скорости вытеснения достигает некоторого значения и стабилизируется на этом уровне; б) с увеличением скорости фильтрации безводная нефтеотдача уменьшается. Эта зависимость получена в экспериментах с повышенной вязкостью нефти.
В результате экспериментальных исследований на объемно-прозрачных моделях пористых сред, проведенных Б. Е. Киселенко, установлена связь между безводной нефтеотдачей и характером продвижения фронта воды в зависимости от отношения вязкостей нефти и воды и скоростей вытеснения.
Анализируя кривые 1, 2, 3 (рис.10.4) можно видеть, что для каждого соотношения вязкостей (до) существует определенный диапазон скоростей вытеснения, при которых безводная нефтеотдача остается постоянной и примерно одинаковой. Это область устойчивого продвижения водонефтяного контакта, где имеется благоприятное сочетание капиллярных и вязкостных сил в процессе вытеснения. По мере увеличения отношения вязкостей диапазон скоростей, при которых происходит устойчивое продвижение фронта вытеснения, уменьшается. При весьма высоких, а также низких скоростях вытеснения (рис.10.4, кривая 1) величина безводной нефтеотдачи уменьшается. Опыты показали, что это снижение безводной нефтеотдачи при скоростях, близких к капиллярному вытеснению, и отношениях вязкостей нефти и воды, близких к единице, связано с неравномерным продвижением водонефтяного контакта. Из-за микронеоднородности пористой среды образуются языки воды, проникающие в нефтяную часть пласта под действием капиллярных сил. Размер зоны, занятой языками воды, в экспериментах не превышал 20% длины модели пласта.
Рис.10.4 Зависимость безводной нефтеотдачи от отношения вязкости нефти, воды и скоростей вытеснения
С увеличением отношения вязкостей роль капиллярных языков в формировании фронта вытеснения резко уменьшается (от кривой 1 к кривой 3). При отношении вязкостей, равном 10, снижение безводной нефтеотдачи при малых скоростях не наблюдается.
При больших скоростях (больших критических) наступает снижение безводной нефтеотдачи (кривая 1), что объясняется нарушением устойчивости продвижения водонефтяного контакта. Наблюдается вязкостная неустойчивость, при которой вода в виде языков проникает в нефтяную часть пласта. С увеличением отношения вязкостей нефти и воды (кривые 1, 2, 3) вязкостная неустойчивость наступает при более низких скоростях вытеснения, т. е. уменьшается диапазон скоростей, при которых происходит устойчивое продвижение водонефтяного контакта.
В опытах при отношениях вязкостей и выше практически ни при каких скоростях вытеснения не удавалось получить устойчивого продвижения водонефтяного контакта. О неустойчивом продвижении можно заключить и из анализа кривых 4, 5, 6 на рис.10.4.
Одним из способов повышения коэффициента нефтеотдачи залежей вязкой нефти является искусственное снижение отношения вязкостей нефти и воды (закачка загущенной воды).
Графики, построенные по результатам экспериментов по закачке загущенной воды (вода и глицерин) при постоянной скорости вытеснения (v = 0,008 см/с), приведены на рис.10.5.
Рис.10.5 Зависимость нефтеотдача от количества прокачанной жидкости
Опыты были продолжительные, причем количество закачанной в пласт воды было доведено до двух объемов. По данным всех кривых нефтеотдача при дальнейшей прокачке после прорыва воды через пласт продолжает нарастать. Однако достигаемая нефтеотдача оказывается различной, чем больше отношение вязкостей, тем она меньше.
Применение загущенной воды позволяет увеличить нефтеотдачу, что можно установить путем сравнения кривых 2 и 3 с кривой 4. Выше оказалась нефтеотдача и в том случае, когда закачку загущенной воды производили с самого начала процесса вытеснения (кривая 2). Когда же загущенную воду закачивали после того, как из модели пласта добыли около одного объема жидкости, первоначально находившейся в пласте, т. е. пласт был значительно заводнен (кривая 3), нефтеотдача оказалась ниже. Однако загущение воды не дает возможности получить при одной и той же величине μ0 такую же нефтеотдачу, как при нефти с меньшей вязкостью (кривая 1).
Совместное рассмотрение кривых 2 и 3 на рис. 10.5 приводит к выводу, что загущенная вода дает лучший результат при закачке ее с самого начала процесса.
Безразмерная вязкость существенно влияет на характер эксплуатации скважин, выработку запасов и параметры разработки залежи. На рисунке 10.6 представлены кривые зависимости КИЗ от обводненности добываемой продукции при различных безразмерных вязкостях.
Рис.10.6 Кривые зависимости КИЗ от обводненности добываемой продукции при различных безразмерных вязкостях
Исходя из графика, можно выделить 3 области с различными показателями: 1 - µ0=3; 2 - µ0<3; 3 - µ0>3
При соотношении вязкости нефти и вытесняющего реагента равной 3 (или близкой к 3) обводненности добываемой продукции происходит постепенно, по линейному закону. Это связано с тем, что из-за незначительной разницы в вязкостях прорыв закачиваемого реагента по пласту происходит поинтервально и постепенно.
При соотношении вязкости нефти и вытесняющего реагента меньше 3 наблюдается продолжительный период безводной или низкообводнённой эксплуатации. Это связано с тем, что закачиваемый реагент наиболее полно вытесняет нефть из пор, движется по пласту с меньшей скоростью. Но при дохождении фронта вытеснения до добывающих скважин происходит мгновенное их обводнение. В связи с тем, что в весь нефтяной вал был вытеснен перед фронтом. При этом возможен перевод обводившихся скважин под нагнетание.
При соотношении вязкости нефти и вытесняющего реагента выше 3 происходит быстрый прорыв закачиваемого вытесняющего реагента к добывающим скважинам. Сначала по системе трещин и впоследствии к обводнению всего интервала. Из-за значительной разницы в вязкостях нефть остаётся захороненной в породе в низкопроницаемых поропластах, фронт вытеснения не равномерен, к скважинам прорываются языки воды.
С ростом µ0 (при одинаковой насыщенности породы) доля нефти в потоке жидкости будет падать.
Снижение µ0 приводит к разработке месторождения с более низким водо-нефтяным фактором. Это в свою очередь позволяет в процессе разработки добывать меньше закачиваемой воды, что ведёт к снижению затрат на её отделению, обработке и закачке обратно в пласт.
Методы применяемые для снижения µ0:
Снижение вязкости нефти – для снижения вязкости необходимо повысить температуру пласта, тем самым и нефти. Для этого используют закачку пара, горячей воды, внутрипластовое горение.
Увеличение вязкости закачиваемого реагента – для увеличения вязкости используют специальные загустители. Закачка полимеров. Сшитых компонентов с водой.
Метод снижения µ0 выбирают на основе экономической целесообразности (учитывая затраты на технологию с одной стороны и увеличение КИН и снижения обводненности с другой).
- Введение
- Тема 1. Геолого-физическая характеристика нефтяных и газовых залежей
- 1.1 Общие понятия о нефти и природном газе с точки зрения их генезиса, физики и химии.
- 1.2 Нефть и газ как сложные многокомпонентные системы углеводородов (ув) в различных термобарических условиях. Фазовые состояния и превращения газонефтяных систем.
- 1.3 Общие сведения об осадочно-миграционной теории органического происхождения ув и образования месторождений нефти и природного газа. Понятие о геологических ловушках для ув, типы ловушек.
- 1.4 Минералы и горные породы. Классификация горных пород. Породы-коллекторы нефти и газа (их основные типы и характеристики).
- 1.4.Краткая стратиграфическая характеристика Припятского прогиба.
- Тема 2 Залежи и месторождения углеводородов
- 2.1 Залежи нефти и природного газа как единичные скопления ув в геологических ловушках. Месторождения нефти и газа.
- Классификация залежей углеводородов
- 2.3 Пластовые воды залежей ув; расположение пластовых вод относительно нефтегазоносной части залежи.
- 2.4 Запасы нефти и природного газа. Категории запасов. Подсчет запасов нефти и газа объемным методом.
- Объемный метод подсчета запасов нефти
- Объемный метод подсчета запасов газа
- Тема 3. Пластовое давление в залежах ув
- 1 Газ; 2 нефть; 3 вода; 4 заводненная зона пласта; 5 точка замера давления в скважине; h расстояние от точки замера до условной плоскости
- Тема 4. Физические параметры пластовых жидкостей и учет их изменения при разработке залежей нефти
- 4.2 Физические параметры пластовых вод.
- Тема 5. Условия эксплуатации нефтяных и газовых скважин
- 5.1 Условие притока флюидов к забоям скважин под действием упругих сил
- 5.2 Стационарные и нестационарные режимы исследования скважин (индикаторная кривая и кривая восстановления давления).
- Исследование скважин методом установившихся отборов (стационарные режимы исследования)
- Исследование скважин методом неустановившихся отборов (кривая восстановления давления)
- 5.3 Система «пласт-скважина» и способы эксплуатации скважин; предел фонтанирования скважины. Обводнение добывающих скважин: источники и пути поступления воды. Технологический режим работы скважин.
- Обводнение добывающих скважин: источники и пути поступления воды.
- Технологический режим работы скважин.
- Тема 6. Основные закономерности разработки залежей нефти
- 6.1 Динамика текущего пластового давления в процессе разработки. Заводнение залежи: преимущества и недостатки.
- Площадное заводнение
- 1 Площади, не охваченные процессом
- 6.3 Стадии разработки нефтяной залежи; характеристика отдельных стадий. Основной период разработки залежи.
- Тема 7. Основные эксплуатационные характеристики залежей нефти
- 7.1 Термобарическая характеристика залежи. Влияние начальных температуры и давления в залежи и состава ув на возможный ход разработки.
- 7.2 Режимы работы пластов как проявление определенного вида пластовой энергии, под действием которой к забоям скважин движутся пластовые жидкости
- 7.3 Классификация режимов Водонапорный режим
- Упругий режим
- Упруговодонапорный режим
- Газонапорный режим
- Режим растворенного газа
- Гравитационный режим
- Сравнительный анализ режимов
- Тема 8. Основы проектирования разработки месторождений нефти и газа
- 8.1 Цели и задачи проектирования разработки. Многостадийность проектирования разработки месторождений нефти
- 8.2 Виды проектных документов, их назначение.
- Тема 9. Объект и система разработки
- 9.1 Выбор объектов по разрезу и площади месторождения. Объединение нескольких продуктивных пластов в один объект разработки; обоснование целесообразности объединения
- 9.2 Понятие о системе разработки нефтяных месторождений. Системы разработки по методу разбуривания месторождения в целом. Системы разработки залежей с естественным напором краевых и подошвенных вод.
- Системы разработки по методу разбуривания месторождения в целом
- Системы разработки залежей с естественным напором краевых и подошвенных вод.
- 9.3 Схематизация формы залежи. Схематизация контуров нефтеносности. Схемы размещения добывающих и нагнетательных скважин.
- 9.4 Характеристика основных технологических показателей разработки. Характеристика основных экономических показателей разработки
- 9.5 Проведение гидродинамических расчетов основных показателей разработки
- 9.6 Понятие о рациональной системе разработки. Выбор рационального варианта
- Тема 10. Основы анализа разработки
- 10.1 Цель и задачи анализа текущего состояния разработки в рамках авторского надзора. Методы проведения анализа.
- Применение статистических методов и упрощенных методик для анализа и прогноза разработки, оценки эффективности проводимых на залежи геолого-технических мероприятий
- 10.2 Факторы, осложняющие процесс вытеснения нефти водой.
- Фазовые проницаемости. Кривые относительных фазовых проницаемостей
- 10.3 Различия вязкостей нефти и воды как фактор, осложняющий процесс вытеснения нефти. Параметр безразмерной вязкости μ0, его влияние на характер выработки запасов.
- 10.4 Методы повышения коэффициента нефтеизвлечения (кин).
- 10.5 Рациональное число и размещение проектных скважин. Основной фонд скважин. Резервные скважины.
- 10.6 Расчет процессов нагнетания.
- Тема 11. Разработка залежей, приуроченных к трещиноватым коллекторам
- 11.1 Контроль и регулирование разработкой нефтяных залежей Контроль за процессом разработки
- Регулирование процесса разработки (рпр)
- 11.2 Основы компьютерного моделировании строения залежей ув и их разработки
- Основные виды исходных данных для цифрового геологического моделирования
- Основные исходные данные для создания гидродинамической модели
- Тема 12. Разработка газовых и газоконденсатных залежей
- 12.1 Состав природных газов. Классификация природных газов. Классификация газовых залежей и месторождений.
- 12.2 Физические свойства природных газов. Тепловые свойства природных газов. Дросселирование газов. Гидратообразование.
- 12.3 Технологический режим работы газовой скважины. Свободный и абсолютно свободный дебит.
- Тема 13 Способы эксплуатации газовых скважин
- Газогидродинамические исследования скважин при установившихся режимах (метод установившихся отборов)
- Исследования скважин при нестационарных режимах фильтрации
- Режимы работы газовых пластов
- Газовый режим
- Водонапорный режим
- Размещение скважин при разработке газоконденсатных залежей
- Определение показателей разработки при газовом режиме для периода нарастающей добычи
- 13.6 Особенности разработки газоконденсатной залежи. Явления обратной конденсации. Особенности разработки газонефтяных и нефтегазовых залежей
- Особенности разработки нефтегазовых залежей
- Системы сбора газа на промысле. Промысловая подготовка газа к транспорту
- Подземное хранение газа
- Список литературы
- Содержание