5.4. Определение теплопроводности гидратосодержащих осадков озера Байкал
В работе для обнаружения придонных скоплений газовых гидратов предлагается определять коэффициент теплопроводности (теплопроводность) донных осадков in situ.
Реакция разложения гидрата метана является эндотермической, т. е. протекает с поглощением скрытой теплоты диссоциации, забирая тем самым часть энергии нагревателя.
В работе исследован процесс установления температуры игольчатого зонда, помещенного в осадки, содержащие в порах гидрата метана, и на этой основе определим условия, при которых по данным измерений можно судить о наличии газовых гидратов в осадках и об изменении теплопроводности среды в процессе ее нагревания. Для этого решена задача о фазовом переходе (задачу Стефана) в среде с осевой симметрией с учетом того, что реакция диссоциации гидрата метана является эндотермической.
Рассмотрены теоретические зависимости для теплопроводности трехкомпонентного (минеральный скелет, поровая вода и гидрат метана или метан-газ) осадочного материала. При этом в качестве теплопроводности гидрата примем значение , теплопроводность минеральной матрицы (скелета) осадка , теплопроводность поровой воды , теплопроводность метана-газа .
где – относительный объем воды, освобождающийся при диссоциации единичного объема гидрата ( ).
Максимальной теплопроводностью обладает тот же осадочный материал, когда тепловой поток направлен вдоль его параллельных компонент. Для этой модели имеем до диссоциации, т. е.
; (3)
и после нее, т. е.
; (4)
Обе модели теплопроводности, безусловно, являются экзотическими, но позволяют оценить весь диапазон возможных значений эффективной теплопроводности донных осадков.
Существенно более реалистичной является такая модель теплопроводности осадка, в которой множество частей каждой из его компонент распределено в объеме случайно. При этом до диссоциации суммарные относительные объемы минеральной, водной и клатратной компонент равны соответственно и . После диссоциации при прежнем суммарном объеме минеральной компоненты водная и газовая компоненты имеют суммарные относительные объемы и . Такая модель является частным случаем многокомпонентной модели, получившей название модели теплопроводности эффективной среды. Вычисления подобных теплопроводностей трехкомпонентных осадков для этапов до и после диссоциации гидрата осуществляются путем нахождения положительных корней и кубических уравнений.
, ; (5)
. (6)
Зависимости теплопроводности от концентрации гидрата метана в поровом пространстве осадка или гидратосодержания, рассчитанные при типичном для морского дна значении пористости .
Как показывают расчеты, практически при любой пористости осадка относительное возрастание его теплопроводности после диссоциации в модели эффективной среды выше по сравнению с моделью максимальной теплопроводности. Максимальное (на 30%) относительное возрастание теплопроводности при 100% пористости соответствует случаю, когда газогидрат заполняет все поровое пространство, т. е. является массивным.
Радиус игольчатого зонда, используемого для изменения теплопроводности донных осадков in situ, обычно составляет приблизительно 2 мм. Полученные выражения для теплопроводностей, рассмотрено изменение температуры зонда, погруженного в донные осадки (например, озера Байкал), содержащие в порах помимо пресной воды гидрата метана.
В районе южной впадины Байкала, где на дне обнаружены скопления гидрата метана, глубина озера в среднем равна 1350 м, а температура придонной воды близки к . Для пористости донных осадков можно принять (60%). В соответствии с фазовой диаграммой для пресной воды при удалении 135 атм. равновесная температура составляет
Одной из особенностей природного газогидратообразования является способность гидратов не только заполнять имеющие поры и пустоты, но и организовывать собственное пространство, формируя массивные тела. Такая ситуация особенно вероятна для донных скоплений газовых гидратов.
Определение теплопроводности донного осадка in situ предполагает использование внедренного в дно игольчатого зонда, опущенного на тросе или кабале с борта судна, которое с помощью движителей удерживается в фиксированной относительно дна точке при значительной глубине водоема. Если гидрат заполняет все поровое пространство осадка с пористостью, например, (типичное значение для донных отложений), то для того чтобы фронт диссоциации за час достиг поверхности иглы, необходима мощность нагревателя, превосходящая . В случае меньшего гидратосодержания осадка для измерений требуется еще более мощный нагреватель. Следует учитывать также, что для надежной фиксации изменения теплопроводности необходимо продолжить измерения в течение некоторого дополнительного времени после начала диссоциации.
Большинство исследователей использует значение теплопроводности гидрата метана (0,4-0,5) .
Именно этими обстоятельствами объясняется то, что при расчетах в качестве основного, как правило, принимают значение теплопроводности .
Независимо от типа теплопроводности осадка, содержащего в порах газовые гидраты, ход температуры иглы претерпевает изменение после их диссоциации. Чем выше концентрация гидрата, тем заметнее это изменение. Наблюдение такого процесса в реальных условиях может служить поисковым признаком присутствия газовых гидратов в донных отложениях.
Результаты расчетов показывают, что для изучения in situ процесса изменения теплопроводности донных осадков с помощью внедренного в них игольчатого зонда линейная мощность используемого нагревателя должна быть достаточно большой желательно превосходящей . В этом случае продолжительность одного измерения не будет превосходить одного часа при любом типе теплопроводности донных отложений.
- Газовые гидраты. Технологии воздействия на нетрадиционные углеводороды.
- 1. Географо-генетическая классификация газогидратных залежей
- 2. Геология месторождений природных газогидратов
- Предисловие
- Введение
- 1. Географо-генетическая классификация газогидратных залежей
- 1.1. Субаквальные газогидратные залежи
- 1.2. Континентальные “стабильные” газогидратные залежи
- 1.3 Континентальные “метастабильные” гидратные залежи
- 2. Геология месторождений природных газогидратов
- 2.1. Геология месторождений газовых гидратов Охотского моря
- 2.2. Геология месторождений газовых гидратов озера Байкал
- 2.2.1. Анализ керна приповерхностных осадков Южного Байкала
- 2.2.2. Анализ главных ионов воды, образовавшийся при разложении байкальских газовых гидратов
- 3. Субаквальные газогидратные залежи
- 3.1. Типизация субаквальных газогидратных залежей
- 3.2. Возможные механизмы формирования химического состава катагенного гидратного газа
- 3.3. Субаквальные газогидратные залежи как индикатор более глубоких залежей нефти и газа
- 4. Газовые гидраты Охотского моря
- 4.1. Газовые гидраты Охотского моря: закономерности формирования и распространения
- 4.2. Термобарические параметры и запасы газовых гидратов Охотского моря
- 5. Газовые гидраты озера Байкал
- 5.1. Гидраты метана в поверхностном слое глубоководных осадков озера Байкал
- 5.2. Новые находки газовых гидратов в донных осадках озера Байкал
- 5.3. Метан бактериального и термогенного происхождения, полученный при разложении газовых гидратов
- 5.4. Определение теплопроводности гидратосодержащих осадков озера Байкал
- 6. Анализ возможных технологий разработки газогидратных залежей
- 6.1. Метод понижения давления, используемый для вывоза притока газа из гидратногопласта
- 6.2. Метод теплового воздействия на газогидратную залежь
- 6.2.1. Практика разработки Мессояхского месторождения газовых гидратов
- 6.2.2. Тепловое воздействие на газогидратную залежь через забой скважины
- 6.2.3. Тепловое воздействие на газогидратную залежь через подошву пласта
- 6.2.4. Совместная разработка залежи высоковязной нефти и гидратных отложений тепловым воздействием
- 6.3. Моделирование добычи газа из гидратов методами понижения давления, нагрева гидратосодержащих пород и комбинированным методом
- 6.4. Методика расчета показателей эксплуатации газогидратных залежей
- 7. Разработка технологий теплового воздействия на газовые гидраты месторождения Маллик (Канада)
- 7.1. Схема разработки месторождения вертикальными скважинами
- 7.2. Нетрадиционная термическая технология добычи трудноизвлекаемых тяжелых нефтей
- 7.3. Принципиальная схема термического метода разработки газогидратной залежи через скважину с веерными горизонтальными окончаниями
- 7.4. Физическая модель термической технологии разработки газогидратной залежи
- 8. Распределение температуры вдоль скважины при закачке горячего теплоносителя с целью теплового воздействия на газогидратную залежь
- 8.1. Приближенное аналитическое решение задачи определения температуры движущейся по скважине смеси и скорости разложения газовых гидратов
- 8.2. Численный расчет распределения температуры и давления вдоль скважины. Определение дебита метана
- 9. Методы добычи, подготовки и транспортировки гидратного газа из морских газогидратных залежей
- 9.1. Тепловой метод добычи газогидратов
- 9.2. Депрессионный метод добычи газогидратов
- 9.3. Ингибиторный метод добычи газогидратов
- 9.4. Технологические схемы подготовки и транспорта газогидратов газа
- 10. Образование техногенных газовых гидратов в системах трубопроводов в процессе разработки нефтяных и газовых месторождений, транспорте и хранении углеводородов
- 10.1. Методы предупреждения образования гидратов углеводородов
- 10.2. Контроль за воздействием на окружающую среду пхг в каменной соли
- Кинетика и морфология первичных кристаллов газовых гидратов
- 11.1. Первичное образование газогидратов
- 11.2. Форма монокристаллов при вторичном образовании газогидратов
- 11.3. О цвете первичных микрокристаллов газогидратов
- 11.4. К вопросу образования газовых пузырей
- 12. Исследование гидратообразования в пористой среде
- 12.1. Методика экспериментального определения условий образования гидратов
- 12.2. Анализ результатов исследования
- 13. Предупреждение гидратообразования в условиях нефтяных и газовых месторождений и хранения углеводородов
- 13.1 Предупреждение гидратообразования в системах сбора и промысловой подготовки газа Заполярного месторождения
- 13.2. Технологические потери метанола
- 13.3. Ингибиторосберегающие способы отбора пхг в каменной соли
- 14. Равновесное условие разложения газовых гидратов, диспергированных в мезопористых средах
- 14.1. Влияние размера пор среды на термодинамические условия разложения газовых гидратов
- 14.3.Анализ результатов образования кристаллов гидрата в пористом пространстве
- 15. Превентивные методы борьбы с гидратообразованием в трубопроводах
- 15.1. Определение интенсивности нарастания газогидратных отложений на стенках трубопровода
- 15.2. Расчет образования гидратных отложений
- 15.3. Способы устранения гидратообразований
- 16. Эффект самоконсервации газовых гидратов
- 16.1. Газогидратные технологии хранения и транспорта природного газа
- 17. Экономическая оценка рентабельности добычи газа из газовых гидратов
- Заключение
- Список литературы