logo search
q_1_60_geol

1. Происхождение Вселенной. Экспериментальные основания теории горячей Вселенной, или Большого Взрыва. Эволюция Вселенной.

В наблюдаемой форме Вселенная возникла около 18-20 млрд. лет назад. До этого времени все ее вещество находилось в условиях бесконечно больших температур и плотностей, которые современная физика не в состоянии описать. Такое состояние вещества называется “сингулярным”. Теорию расширяющейся Вселенной или “Большого Взрыва”, впервые была создана А.А.Фридманом в России в 1922 г. С какого-то момента, отстоящего от нас на 20 млрд лет вещество, находящееся в сингулярном состоянии, подверглось внезапному расширению, которые в самых общих чертах можно уподобить взрыву, хотя и весьма своеобразному. Вечно возникающий вопрос “ А что же было до Большого Взрыва”, по мнению известного английского физика С.Хогинса, носит метафизический характер, т.к. это состояние никак впоследствии не отразилось на нынешней Вселенной.

Современная теоретическая физика достоверно описывает процессы “Большого Взрыва”, но только после 1/100 секунды с момента его начала. Так, температура в 1032 К была достигнута через 10-43 сек, 10^ К - через 1 сек., 109 К - через 1 минуту, 104 К - через 100 тыс. лет, а 103 К - через 1 миллион лет. Расширяющееся вещество становилось менее плотным и менее горячим. Теорию не только первоначально очень плотной, но и очень горячей Вселенной в конце 40-х годов развивал знаменитый физик Георгий Гамов. Первичный нуклеосинтез стал возможен уже через несколько минут после начала Большого Взрыва, а через 1 млн. лет и формирование атомов (рис. 1.1). С момента начала Большого Взрыва вещество Вселенной непрерывно расширяется и все объекты в ней и галактики и звезды равноудаляются друг от друга. Это расширение хорошо подтверждается рядом экспериментальных фактов.

1.“Разбегание “ галактик и скоплений галактик. Доказательство этого явления связано с эффектом Допплера, заключающимся в том, что спектральные линии поглощения в наблюдаемых спектрах удаляющегося от нас объекта всегда смещаются в красную сторону, а приближающегося - в голубую. Во всех случаях наблюдения спектральных линий поглощения от галактик и далеких звезд, смещение происходит в красную сторону, причем, чем дальше отстоит от нас объект наблюдения, тем смещение больше (рис. 1. 2 ).

Рис. 1.1. Эффект Доплера. При удалении объекта от наблюдателя спектральные линии смещаются в сторону красного цвета (“красные смещения”)

Все галактики и звезды удаляются от нас и самые далекие из них удаляются с большей скоростью. Это закон Хаббла - астронома, открытый им в 1929 г.: V=HR, где V - скорость удаления, R - расстояние до космического объекта, а Н - коэффициент пропорциональности или постоянная Хаббла, Н = 15 км/сек / 10 6 свет. лет ( 1 световой год = 9,6-1012 км или 6,3• 104 А.Е.).

2.“Реликтовое излучение”. В 1964 г. американские астрономы Арно Пензиас и Роберт Вилсон с помощью рупорной антенны фирмы “Белл телефон” в штате Нью Джерси, обнаружили фоновое электромагнитное излучение на длине волны 7,35 см, одинаковое по всем направлениям и не зависящее от времени суток. Это излучение эквивалентно излучению, как говорят физики, абсолютно черного тела с Т ≈ 2,75 К. Еще до обнаружения фонового микроволнового излучения оно было предсказано физиками-теоретиками.

Излучение с такой низкой температурой представляет собой реликт равновесного электромагнитного излучения с очень высокой первоначальной температурой, существовавшего на самых ранних стадиях образования Вселенной, сразу же после начала “Большого Взрыва”. С тех пор эффективная температура от многих миллионов упала до трех градусов Кельвина.

3. Наблюдаемый химический состав Вселенной составляет по массе 3/4 водорода и 1/4 гелия. Все остальные элементы не превышают в составе Вселенной даже 1%. В такой пропорции 3:1 Н и Не образовались в самые первые минуты Большого Взрыва, а, кроме того, и легкие элементы: литий, дейтерий, тритий, но в ничтожном количестве. Тяжелые элементы образовались во Вселенной гораздо позже, когда в результате термоядерных реакций “зажглись” звезды, а при взрывах сверхновых звезд они оказались выброшены в космическое пространство.

Что может ожидать Вселенную в будущем? Ответ на это вопрос заключается в установлении средней плотности Вселенной и от величины уже упоминавшийся выше постоянной Хаббла. Современное значение плотности равно 10 -29 г/см3, что составляет 10-5 атомных единиц массы в 1 см 3. Чтобы представить такую плотность надо 1 г вещества распределить по кубу со стороной 40000 км! Если средняя плотность будет равна или несколько ниже критической плотности, Вселенная будет только расширяться, а если средняя плотность будет выше критической, то расширение Вселенной со временем прекратиться и она начнет сжиматься, возвращаясь к сингулярному состоянию.

Спустя примерно 1 млрд. лет после начала Большого Взрыва, в результате сжатия огромных газовых облаков или их протяженных газовых фрагментов, стали формироваться звезды и галактики, скопления миллионов звезд. Образование звезд теоретически рассчитано вполне достоверно. Любая звезда формируется в результате коллапса космического облака газа и пыли. Когда сжатие в центре структуры приведет к очень высоким температурам, в центре “сгустка” начинаются ядерные реакции, т.е.

превращение Н в Не с выделением огромной энергии, в результате излучения которой звезда и светится.

Рис. 1.2. Строение Галактики Млечного пути. Центральная часть Галактики характеризуется утолщением

Обнаруженные в наши дни слабые вариации реликтового излучения в пространстве, равные 0,001 % от средней величины, свидетельствуют о неравномерной плотности вещества во Вселенной. Вероятно, что это первичное различие в плотности и послужило как бы “затравкой” для возникновения в будущем скоплений галактик и галактик. Там, где плотность была выше средней, силы гравитации были больше, а, следовательно, уплотнение происходило сильнее и быстрее относительно соседних участков от которых вещество перемещалось в сторону более плотных сгущений. Так начиналось формирование галактик. Только 200 лет назад В.Гершель открыл межзвездные облака, а до этого все пространство между звездами считалось эталоном пустоты. В 1975 г. были обнаружены гигантские молекулярные облака (ГМО), масса которых в миллионы раз больше Солнечной массы.

Галактика Млечного Пути (ГМП) - одна из 100 000 миллионов галактик в наблюдаемой части Вселенной, обладает формой уплощенного диска, с диаметром около 100000 свет. лет и толщиной в 20000 свет. лет. В разрезе в центре наблюдается утолщение (балдж), которое состоит из старых звезд и ядро, скрытое облаками плотного газа (рис. 1.3 ). Не исключено, что в центре ГМП существует “черная дыра”, как в ядрах других спиральных галактик. Интересно, что ГМП окружена темным облаком ненаблюдаемого вещества, масса которого в 10 или более раз превышает массу всех звезд и газа в ГМП. Молодые звезды в осевой части диска окружены огромной сферической областью - гало, в которой находятся старые звезды.

Где же наше место в ГМП? Солнце, представляющее собой небольшую звезду среднего возраста типа желтого карлика, располагается в 3/5 от центра галактики в пределах главного диска. То, что оно принадлежит ГМП было установлено всего лишь 65 лет назад шведом Б.Линдбладом и голландцем Я. Оортом.

С Земли, как одной из 9 планет, вращающихся вокруг Солнца, мы видим звезды Млечного пути в виде арки, пересекающей небосвод, т. к. мы смотрим на край ГМП из ее срединной области. В 1610 г. Галилей насчитал в Млечном Пути всего 6000 звезд. Ближайшая к нам звезда, не считая Солнца, Альфа Центавра - 4 световых года. Все звезды ГМП медленно вращаются вокруг галактического центра. Солнце с планетами совершает один оборот вокруг центра ГМП за 250 млн. лет со скоростью 240 км/сек. Галактический год играет важную роль в периодизации геологической истории Земли.