logo
q_1_60_geol

28. Связь вулканизма с интрузивным магматизмом, понятие о магматическом очаге и дифференциации магмы.

Любой магматический расплав - это трехкомпонентная система, состоящая из жидкости, газа и твердых кристаллов, которая стремится к равновесному состоянию. В зависимости от изменения температуры, давления, состава газов и т.д. меняются расплав и образовавшиеся в нем ранее кристаллы минералов - одни растворяются, другие возникают вновь, и весь объем магмы непрерывно эволюционирует. Подобный процесс называется магматической дифференциацией. На нее оказывает влияние также и взаимодействие с вмещающими породами и потоками глубинных флюидов. Процесс кристаллизационной дифференциации хорошо изучен, причем не только теоретически, но и экспериментально. Кристаллы, образующиеся в магме, обычно отличаются от нее по составу, а также по плотности, что вызывает осаждение или всплывание кристаллов. При этом состав оставшегося расплава будет изменяться. В основных силикатных базальтовых магмах сформировавшиеся раньше всего кристаллы оливина и пироксена, как обладающие большей плотностью, могут скапливаться в нижних горизонтах магматической камеры, состав которой из однородного базальтового становится расслоенным. Нижняя часть приобретает ультраосновной состав, более высокая - базальтовый, а самые верхние части, обогащаясь кремнеземом и щелочными металлами, приобретают кремнекислый состав, вплоть до гранитного Так образуются расслоенные интрузивные тела. Кристаллизационная и гравитационная дифференциация является одним из важнейших процессов эволюции магматических расплавов. Не меньшую роль играет и взаимодействие магмы с флюидами. Как уже говорилось, магма - это флюидно-силикатный расплав, состоящий из главных нелетучих петрогенных окислов: SiO2, TiO2, Al2O3, Fe2O3, FeO, CaO, MgO, Na2O, K2O по объему составляющих 90-97%. Летучие компоненты в магме представлены СО2, Н2, Н2О, HF и др. Оксид углерода, водород, вода легко (раньше всего) отделяются от расплава, способствуя образованию “сухих” магм. Фтор и другие летучие компоненты накапливаются в расплаве, так как они трудно отделимы от него. “Сухие” расплавы, например известные всем доменные алюмосиликатные шлаки, кристаллизуются при высокой температуре - около 1500-1600° С. В то же время природные базальтовые расплавы имеют температуру кристаллизации 1200-1300° С, а более кремнекислые и еще ниже. Чем вызвана эта разница? Самый главный фактор, вызывающий понижение температуры кристаллизации, - это флюидное давление. Чем оно выше, тем температура кристаллизации ниже. Особенно велико влияние воды на структурные и химические свойства силикатных расплавов. Увеличение давления Н2О и ее растворение понижает вязкость расплавов и температуру их кристаллизации. Важное значение имеет продукт восстановления воды - водород Н2 и так называемое водно-водородное отношение Н2О/Н2 , в зависимости от которого варьирует соотношение Fe2O3 / FeO, показывающее степень окисления – восстановления расплава. Повышенное содержание летучих (флюидов) компонентов способствует сохранению расплавов в жидком состоянии до сравнительно низких температур, если сопоставлять их с таковыми “сухих расплавов. Таким образом, флюидные компоненты, обладающие высокой растворимостью в расплавах, т.е. трудно отделяемые от него, понижают температуру кристаллизации расплава, а компоненты труднорастворимые, наоборот, повышают температуру кристаллизации. Если в магме содержится много летучих компонентов, которые могут легко от нее отделяться, то она приобретает способность взрываться, что проявляется в мощных эксплозивных извержениях вулканов. Отделение летучих компонентов от магмы происходит обычно в верхних горизонтах земной коры, где давление ниже. Обогащение одних участков расплава по сравнению с другими флюидными компонентами приводит к тому, что первые дольше сохраняют жидкое состояние, способствуя появлению полосчатых текстур и приводя к образованию несмешивающихся расплавов, т.е. к ликвации. Важно подчеркнуть, что потоки глубинных флюидов, проходя через расплав и взаимодействуя с ними, изменяют его состав за счет привноса одних и выноса других компонентов. Таким образом, флюидный режим, различная растворимость (магмофильность) флюидных компонентов в расплаве, повышение или понижение их давления оказывают решающее влияние на дифференциацию магматических расплавов, их вязкость и температуру кристаллизации. Важным фактором эволюции и дифференциации магматических расплавов является их взаимодействие с вмещающими породами. Как правило, магма представляет собой наиболее легкоплавкий состав - эвтектику, поэтому и вынос компонентов из магматического расплава при взаимодействии с вмещающими породами происходит за счет компонентов избыточных по отношению к эвтектике. В то же время магма усваивает такие компоненты окружающих пород, которое как раз и способствуют достижению ее эвтектического состава, т.е. самого легкоплавкого. Кислые и средние магм, содержащие больше кремнезема по сравнению с основными и обладающие более сильными кислотными свойствами, энергично воздействуют на вмещающие породы. Поэтому у гранитных интрузивов такие обширные зоны измененных пород в окружающих толщах. При взаимодействии магмы с последними часто происходит их усвоение, ассимиляция, что приводит к возникновению новых пород, называемых гибридными. Таким образом, магма - это флюидно-силикатный расплав, эволюционирующий сложным путем, зависящим от большого количества факторов, полный учет которых в настоящее время невозможен. Следует еще раз подчеркнуть важную роль флюидов в жизни магматических расплавов, концентрация, состав и магмофильность которых определяют пути их эволюции и дифференциации. Летучие компоненты препятствуют полимеризации, т.е. застыванию расплавов, понижая температуру ее кристаллизации. Наличие легко отделяемых летучих компонентов приводит к вулканическим процессам, трудно отделяемых - к интрузивным. Где и почему возникают те магмы, которые, достигая поверхности Земли, извергаются на нее из разнообразных вулканических аппаратов? Расплавленного сплошного слоя в земной коре или верхней мантии не существует. Для начала плавления твердой горной поорды в глубинах Земли необходимо повышение температуры, понижение всестороннего давления и влияние флюидов. Эти факторы могут действовать, как все вместе, так и по отдельности. Плавление начинается обычно в местах сочленения минеральных зерен в узлах концентрации напряжений. Это место называется первичным магматическим очагом. Образовавшиеся капли расплава стремятся двигаться в сторону уменьшения градиента давления и перемещаясь вверх сливаются между собой, формируя уже вторичные или промежуточные очаги. Если магма движется медленно, она успевает ассимилировать вмещаюшме породы или подвергнуться гравитационной дифференциации, при которой в низах очага образуется более основной расплав, чем в верхах. О наличии многоярусных очагов свидетельствуют геофизические исследования, например, Камчатских вулканов, под которыми выявляется несколько «этажей» магматических очагов.