25. Дифференциация магмы и превращение ее в горную породу.
Магма - это расплавленное вещество, которое образуется при определенных значениях давления и температуры и представляет собой флюидно-силикатный расплав, т.е. содержит в своем составе соединения с кремнеземом (SiО2) и летучие вещества, присутствующие в виде газа (пузырьков), либо растворенные в расплаве (рис. 1). При затвердевании магматического расплава он теряет летучие компоненты, поэтому горные породы гораздо беднее последними, нежели магма. Силикатные магматические расплавы состоят из кремнекислородных тетраэдров, которые полимеризованы в разной степени.
Если степень полимеризации низка, то тетраэдры, как правило, изолированы; если высока, то они сливаются в цепочки, кольца и т.д.
Рис. 15.1.1. Условия, способствующие плавлению горной породы, превращению ее в магму и охлаждению магмы, с превращением ее в горную породу
Любой магматический расплав - это трехкомпонентная система, состоящая из жидкости, газа и твердых кристаллов, которая стремится к равновесному состоянию. В зависимости от изменения температуры, давления, состава газов и т.д. меняются расплав и образовавшиеся в нем ранее кристаллы минералов - одни растворяются, другие возникают вновь, и весь объем магмы непрерывно эволюционирует. Подобный процесс называется магматической дифференциацией. На нее оказывает влияние также и взаимодействие с вмещающими породами и потоками глубинных флюидов.
Процесс кристаллизационной дифференциации хорошо изучен, причем не только теоретически, но и экспериментально. Кристаллы, образующиеся в магме, обычно отличаются от нее по составу, а также по плотности, что вызывает осаждение или всплывание кристаллов. При этом состав оставшегося расплава будет изменяться. В основных силикатных базальтовых магмах сформировавшиеся раньше всего кристаллы оливина и пироксена, как обладающие большей плотностью, могут скапливаться в нижних горизонтах магматической камеры, состав которой из однородного базальтового становится расслоенным. Нижняя часть приобретает ультраосновной состав, более высокая - базальтовый, а самые верхние части, обогащаясь кремнеземом и щелочными металлами, приобретают кремнекислый состав, вплоть до гранитного, так образуются расслоенные интрузивные тела. Кристаллизационная и гравитационная дифференциация является одним из важнейших процессов эволюции магматических расплавов.
Не меньшую роль играет и взаимодействие магмы с флюидами. Как уже говорилось, магма - это флюидно-силикатный расплав, состоящий из главных нелетучих петрогенных окислов: SiO2, TiO2, Al2O3, Fe2O3, FeO, CaO, MgO, Na2O, K2O по объему составляющих 90-97%. Летучие компоненты в магме представлены СО2, Н2, Н2О, HF и др.
Оксид углерода, водород, вода легко (раньше всего) отделяются от расплава, способствуя образованию “сухих” магм. Фтор и другие летучие компоненты накапливаются в расплаве, так как они трудно отделимы от него. “Сухие” расплавы, например известные всем доменные алюмосиликатные шлаки, кристаллизуются при высокой температуре - около 1500-1600° С. В то же время природные базальтовые расплавы имеют температуру кристаллизации 1200-1300° С, а более кремнекислые и еще ниже. Чем вызвана эта разница?
Самый главный фактор, вызывающий понижение температуры кристаллизации, - это флюидное давление. Чем оно выше, тем температура кристаллизации ниже. Особенно велико влияние воды на структурные и химические свойства силикатных расплавов.
Увеличение давления Н2О и ее растворение понижает вязкость расплавов и температуру их кристаллизации. Важное значение имеет продукт восстановления воды - водород Н2 и так называемое водно-водородное отношение Н2О/Н2 , в зависимости от которого варьирует соотношение Fe2O3 / FeO, показывающее степень окисления – восстановления расплава. Повышенное содержание летучих (флюидов) компонентов способствует сохранению расплавов в жидком состоянии до сравнительно низких температур, если сопоставлять их с таковыми “сухих расплавов.
Таким образом, флюидные компоненты, обладающие высокой растворимостью в расплавах, т.е. трудно отделяемые от него, понижают температуру кристаллизации расплава, а компоненты труднорастворимые, наоборот, повышают температуру кристаллизации. Если в магме содержится много летучих компонентов, которые могут легко от нее отделяться, то она приобретает способность взрываться, что проявляется в мощных эксплозивных извержениях вулканов. Отделение летучих компонентов от магмы происходит обычно в верхних горизонтах земной коры, где давление ниже. Обогащение одних участков расплава по сравнению с другими флюидными компонентами приводит к тому, что первые дольше сохраняют жидкое состояние, способствуя появлению полосчатых текстур и приводя к образованию несмешивающихся расплавов, т.е. к ликвации. Важно подчеркнуть, что потоки глубинных флюидов, проходя через расплав и взаимодействуя с ними, изменяют его состав за счет привноса одних и выноса других компонентов. Таким образом, флюидный режим, различная растворимость (магмофильность) флюидных компонентов в расплаве, повышение или понижение их давления оказывают решающее влияние на дифференциацию магматических расплавов, их вязкость и температуру кристаллизации.
Важным фактором эволюции и дифференциации магматических расплавов является их взаимодействие с вмещающими породами. Как правило, магма представляет собой наиболее легкоплавкий состав - эвтектику, поэтому и вынос компонентов из магматического расплава при взаимодействии с вмещающими породами происходит за счет компонентов избыточных по отношению к эвтектике. В то же время магма усваивает такие компоненты окружающих пород, которое как раз и способствуют достижению ее эвтектического состава, т.е. самого легкоплавкого. Кислые и средние магм, содержащие больше кремнезема по сравнению с основными и обладающие более сильными кислотными свойствами, энергично воздействуют на вмещающие породы.
Поэтому у гранитных интрузивов такие обширные зоны измененных пород в окружающих толщах. При взаимодействии магмы с последними часто происходит их усвоение, ассимиляция, что приводит к возникновению новых пород, называемых гибридными.
Каким же образом магма превращается в горную породу? Кристаллизация магмы происходит не мгновенно, а постепенно, с одновременным падением температуры.
Возможны несколько вариантов (рис. 2). В 1-ом из них охлаждение происходит очень быстро, расплав переохлаждается и превращается в вулканическое стекло – обсидиан (точки 0→1→6). 2-ой вариант связан с медленным охлаждением и кристаллизацией расплава. На диаграмме состояния линия, соединяющая точки, где в расплаве появляются первые кристаллы, называется ликвидусом, а линия, соединяющая точки, где полностью исчезает расплав - солидусом.
Рис. 2. Диаграмма плавкости для твердых растворов плагиоклазового ряда (по Н.Боуэну). Давление Р = 1 атм. Состав выделившихся из расплава кристаллов определяется на оси. Точки 1, 2, 3, 4, 5 и 6 обозначают разные стадии кристаллизации расплава
Между этими линиями находится поле сосуществования расплава и кристаллов. С падением температуры от точки 0 в точке 1 появляются первые кристаллы, состав которых отвечает точке 4. При дальнейшем охлаждении эти кристаллы реагируют с оставшимся расплавом, состав которого движется от точки 1 к точке 2, а состав кристаллов - от точки 4 к точке 5. Если по каким либо причинам, например, в случае извержения будет происходить быстрое охлаждение расплава, то возникнут породы с порфировой структурой, когда в стекловатой основной массе стекла, по составу отвечающего точке 2 или какой-нибудь другой, будут находиться вкрапленники плагиоклаза зонального строения. В ядре - кальциевый плагиоклаз точки 4, а во внешней зоне - натриево-кальциевый плагиоклаз точки 5.
В 3-ем варианте при очень медленном охлаждении расплав и кристаллы успевают полностью прореагировать между собой, поэтому состав расплава дойдет до точки 3 из точки 1, а состав кристаллов - до точки 6 от точки 4. Ранние кальциевые плагиоклазы при реакции с расплавом будут замещаться все более натриевыми. В конце процесса кристаллизации образуются полнокристаллические породы, сложенные незональным кальциево-натриевым плагиоклазом точки 6. Последовательность выделения главных породообразующих минералов из магмы определяется двумя реакционными рядами, установленными Н.Боуэном в 1928 г. (рис. 3)
Рис. 3. Реакционный ряд Боуэна
Из рассмотренного следует, что процессы превращения магмы, даже простого состава, в горные породы достаточно сложны и на них, кроме охлаждения, сильно влияют, разные факторы, например, колебания давления воды (РН2О ).
Таким образом, магма - это флюидно-силикатный расплав, эволюционирующий сложным путем, зависящим от большого количества факторов, полный учет которых в настоящее время невозможен. Следует еще раз подчеркнуть важную роль флюидов в жизни магматических расплавов, концентрация, состав и магмофильность которых определяют пути их эволюции и дифференциации. Летучие компоненты препятствуют полимеризации, т.е. застыванию расплавов, понижая температуру ее кристаллизации.
Наличие легко отделяемых летучих компонентов приводит к вулканическим процессам, трудно отделяемых - к интрузивным.
- 1. Происхождение Вселенной. Экспериментальные основания теории горячей Вселенной, или Большого Взрыва. Эволюция Вселенной.
- 2. Строение и происхождение Солнечной системы, основные гипотезы.
- 3. Образование и внутреннее строение Земли. Сейсмологический метод и его роль в изучении Земли.
- 4. Строение земной коры и верхней мантии. Методы изучения.
- 5. Магнитное поле Земли, его параметры и возможное образование. Палеомагнитный метод.
- 6. Тепловое поле Земли
- 7. Литосфера, астеносфера. Особенности, выделение, роль в геологии.
- 8. Магматические горные породы и их классификация.
- 9. Особенности строения метаморфических горных пород. Стадии регионального метаморфизма.
- 10. Осадочные горные породы и их классификация.
- 11. Процессы выветривания, основные формы и факторы выветривания.
- 12. Взаимосвязь различных видов эоловых процессов.
- Дефляция и корразия.
- Эоловый перенос материала.
- Аккумуляция эолового материала.
- 13. Пустыни как области максимального развития эолового процесса. Типы пустынь. Формирование эолового рельефа и движение песков.
- 14. Геологическая деятельность поверхностных текущих вод. Образование делювия и пролювия.
- 15. Формирование речной долины, образование речных террас, их типы.
- 16. Виды эрозии в речных потоках, профиль равновесия реки и факторы его определяющие.
- 17. Образование, типы, режим и рельефообразующая деятельность ледников.
- 18. Водно-ледниковые отложения, особенности строения и рельефа перигляциальных областей.
- 19. Происхождение, типы и геологическая деятельность подземных вод.
- 20. Карстовые процессы, распространение, типы карста и его поверхностные формы.
- 21. Криогенные формы рельефа
- Термокарст
- 22. Основные понятия о многолетнемерзлых породах, распространение, мощность, типы подземных льдов, возникновение криолитозоны.
- Происхождение криолитозоны
- 23. Типы гравитационных геологических процессов на склонах.
- 24. Оползни, факторы их возникновения, морфология оползневых тел, меры борьбы с ними.
- 25. Дифференциация магмы и превращение ее в горную породу.
- 26. Продукты извержения вулканов и строение лавовых потоков.
- 27. Трещинный и ареальный типы вулканизма. Типы вулканических аппаратов и их строение.
- 28. Связь вулканизма с интрузивным магматизмом, понятие о магматическом очаге и дифференциации магмы.
- 29. Интрузивный магматизм и типы интрузивных тел.
- 30. Географическое распространение и геологическая позиция современного вулканизма.
- 31. Понятие о метаморфизме и его факторах, типы метаморфизма.
- 32. Основные черты рельефа океанского дна.
- 33. Строение пассивной континентальной окраины, ее происхождение.
- 34. Строение активных континентальных окраин, их происхождение.
- 35. Строение и рельеф срединно-океанских хребтов. Их происхождение.
- 36. Абиссальные равнины и их типы, распространение, гайоты.
- 37. Характеристика основных типов морского осадконакопления.
- 38. Движение морской воды, его причины, основные течения.
- 39. Приливы и отливы, причины возникновения, геологическая роль.
- 40. Закономерности волновых движений воды; волна и ее элементы, поведение волны на отмелом и приглубом берегу.
- 41. Геологическая роль организмов в процессах, протекающих в Мировом океане.
- 42. Биогенное осадконакопление.
- 43. Понятие о лизоклине, критической глубине карбонатонакопления и глубине карбонатной компенсации.
- 44. Глубоководное осадконакопление и его особенности.
- 45. Турбидные потоки, их происхождение и формирование флиша.
- 46. Разрушительная работа моря. Общая характеристика.
- 47. Формирование пляжей, прибрежные морские аккумулятивные формы рельефа.
- 48. Понятие о фациях осадочных пород.
- 49. Слой и слоистость. Взаимоотношение слоистых толщ. Трансгрессивное и регрессивное залегание отложений, их образование и выражение в геологическом разрезе.
- 50. Типы несогласий, их происхождение и выражение в разрезе и на геологической карте
- 51. Складчатые деформации. Элементы складки, типы и формы складок, их образование.
- 52. Разрывные деформации. Типы разрывных нарушений. Элементы разрыва, условия образования.
- 53. Понятия о землетрясениях, их параметры.
- 54. Географическое распространение и геологические обстановки возникновения землетрясений, сейсмофокальные зоны Беньоффа.
- 55. Характеристика континентов и океанов как важнейших структур земной коры.
- 56. Линейные вулканические архипелаги, их происхождение и строение, понятие о горячих точках и их значение для тектоники литосферных плит.
- 57. Тектоника литосферных плит, истоки, развитие и содержание.
- 58. Современные движения земной коры. Методы и результаты их изучения.
- 59. Тектонические процессы на дивергентных границах литосферных плит.
- 60. Тектонические процессы на конвергентных границах литосферных плит.