logo
q_1_60_geol

25. Дифференциация магмы и превращение ее в горную породу.

Магма - это расплавленное вещество, которое образуется при определенных значениях давления и температуры и представляет собой флюидно-силикатный расплав, т.е. содержит в своем составе соединения с кремнеземом (SiО2) и летучие вещества, присутствующие в виде газа (пузырьков), либо растворенные в расплаве (рис. 1). При затвердевании магматического расплава он теряет летучие компоненты, поэтому горные породы гораздо беднее последними, нежели магма. Силикатные магматические расплавы состоят из кремнекислородных тетраэдров, которые полимеризованы в разной степени.

Если степень полимеризации низка, то тетраэдры, как правило, изолированы; если высока, то они сливаются в цепочки, кольца и т.д.

Рис. 15.1.1. Условия, способствующие плавлению горной породы, превращению ее в магму и охлаждению магмы, с превращением ее в горную породу

Любой магматический расплав - это трехкомпонентная система, состоящая из жидкости, газа и твердых кристаллов, которая стремится к равновесному состоянию. В зависимости от изменения температуры, давления, состава газов и т.д. меняются расплав и образовавшиеся в нем ранее кристаллы минералов - одни растворяются, другие возникают вновь, и весь объем магмы непрерывно эволюционирует. Подобный процесс называется магматической дифференциацией. На нее оказывает влияние также и взаимодействие с вмещающими породами и потоками глубинных флюидов.

Процесс кристаллизационной дифференциации хорошо изучен, причем не только теоретически, но и экспериментально. Кристаллы, образующиеся в магме, обычно отличаются от нее по составу, а также по плотности, что вызывает осаждение или всплывание кристаллов. При этом состав оставшегося расплава будет изменяться. В основных силикатных базальтовых магмах сформировавшиеся раньше всего кристаллы оливина и пироксена, как обладающие большей плотностью, могут скапливаться в нижних горизонтах магматической камеры, состав которой из однородного базальтового становится расслоенным. Нижняя часть приобретает ультраосновной состав, более высокая - базальтовый, а самые верхние части, обогащаясь кремнеземом и щелочными металлами, приобретают кремнекислый состав, вплоть до гранитного, так образуются расслоенные интрузивные тела. Кристаллизационная и гравитационная дифференциация является одним из важнейших процессов эволюции магматических расплавов.

Не меньшую роль играет и взаимодействие магмы с флюидами. Как уже говорилось, магма - это флюидно-силикатный расплав, состоящий из главных нелетучих петрогенных окислов: SiO2, TiO2, Al2O3, Fe2O3, FeO, CaO, MgO, Na2O, K2O по объему составляющих 90-97%. Летучие компоненты в магме представлены СО2, Н2, Н2О, HF и др.

Оксид углерода, водород, вода легко (раньше всего) отделяются от расплава, способствуя образованию “сухих” магм. Фтор и другие летучие компоненты накапливаются в расплаве, так как они трудно отделимы от него. “Сухие” расплавы, например известные всем доменные алюмосиликатные шлаки, кристаллизуются при высокой температуре - около 1500-1600° С. В то же время природные базальтовые расплавы имеют температуру кристаллизации 1200-1300° С, а более кремнекислые и еще ниже. Чем вызвана эта разница?

Самый главный фактор, вызывающий понижение температуры кристаллизации, - это флюидное давление. Чем оно выше, тем температура кристаллизации ниже. Особенно велико влияние воды на структурные и химические свойства силикатных расплавов.

Увеличение давления Н2О и ее растворение понижает вязкость расплавов и температуру их кристаллизации. Важное значение имеет продукт восстановления воды - водород Н2 и так называемое водно-водородное отношение Н2О/Н2 , в зависимости от которого варьирует соотношение Fe2O3 / FeO, показывающее степень окисления – восстановления расплава. Повышенное содержание летучих (флюидов) компонентов способствует сохранению расплавов в жидком состоянии до сравнительно низких температур, если сопоставлять их с таковыми “сухих расплавов.

Таким образом, флюидные компоненты, обладающие высокой растворимостью в расплавах, т.е. трудно отделяемые от него, понижают температуру кристаллизации расплава, а компоненты труднорастворимые, наоборот, повышают температуру кристаллизации. Если в магме содержится много летучих компонентов, которые могут легко от нее отделяться, то она приобретает способность взрываться, что проявляется в мощных эксплозивных извержениях вулканов. Отделение летучих компонентов от магмы происходит обычно в верхних горизонтах земной коры, где давление ниже. Обогащение одних участков расплава по сравнению с другими флюидными компонентами приводит к тому, что первые дольше сохраняют жидкое состояние, способствуя появлению полосчатых текстур и приводя к образованию несмешивающихся расплавов, т.е. к ликвации. Важно подчеркнуть, что потоки глубинных флюидов, проходя через расплав и взаимодействуя с ними, изменяют его состав за счет привноса одних и выноса других компонентов. Таким образом, флюидный режим, различная растворимость (магмофильность) флюидных компонентов в расплаве, повышение или понижение их давления оказывают решающее влияние на дифференциацию магматических расплавов, их вязкость и температуру кристаллизации.

Важным фактором эволюции и дифференциации магматических расплавов является их взаимодействие с вмещающими породами. Как правило, магма представляет собой наиболее легкоплавкий состав - эвтектику, поэтому и вынос компонентов из магматического расплава при взаимодействии с вмещающими породами происходит за счет компонентов избыточных по отношению к эвтектике. В то же время магма усваивает такие компоненты окружающих пород, которое как раз и способствуют достижению ее эвтектического состава, т.е. самого легкоплавкого. Кислые и средние магм, содержащие больше кремнезема по сравнению с основными и обладающие более сильными кислотными свойствами, энергично воздействуют на вмещающие породы.

Поэтому у гранитных интрузивов такие обширные зоны измененных пород в окружающих толщах. При взаимодействии магмы с последними часто происходит их усвоение, ассимиляция, что приводит к возникновению новых пород, называемых гибридными.

Каким же образом магма превращается в горную породу? Кристаллизация магмы происходит не мгновенно, а постепенно, с одновременным падением температуры.

Возможны несколько вариантов (рис. 2). В 1-ом из них охлаждение происходит очень быстро, расплав переохлаждается и превращается в вулканическое стекло – обсидиан (точки 0→1→6). 2-ой вариант связан с медленным охлаждением и кристаллизацией расплава. На диаграмме состояния линия, соединяющая точки, где в расплаве появляются первые кристаллы, называется ликвидусом, а линия, соединяющая точки, где полностью исчезает расплав - солидусом.

Рис. 2. Диаграмма плавкости для твердых растворов плагиоклазового ряда (по Н.Боуэну). Давление Р = 1 атм. Состав выделившихся из расплава кристаллов определяется на оси. Точки 1, 2, 3, 4, 5 и 6 обозначают разные стадии кристаллизации расплава

Между этими линиями находится поле сосуществования расплава и кристаллов. С падением температуры от точки 0 в точке 1 появляются первые кристаллы, состав которых отвечает точке 4. При дальнейшем охлаждении эти кристаллы реагируют с оставшимся расплавом, состав которого движется от точки 1 к точке 2, а состав кристаллов - от точки 4 к точке 5. Если по каким либо причинам, например, в случае извержения будет происходить быстрое охлаждение расплава, то возникнут породы с порфировой структурой, когда в стекловатой основной массе стекла, по составу отвечающего точке 2 или какой-нибудь другой, будут находиться вкрапленники плагиоклаза зонального строения. В ядре - кальциевый плагиоклаз точки 4, а во внешней зоне - натриево-кальциевый плагиоклаз точки 5.

В 3-ем варианте при очень медленном охлаждении расплав и кристаллы успевают полностью прореагировать между собой, поэтому состав расплава дойдет до точки 3 из точки 1, а состав кристаллов - до точки 6 от точки 4. Ранние кальциевые плагиоклазы при реакции с расплавом будут замещаться все более натриевыми. В конце процесса кристаллизации образуются полнокристаллические породы, сложенные незональным кальциево-натриевым плагиоклазом точки 6. Последовательность выделения главных породообразующих минералов из магмы определяется двумя реакционными рядами, установленными Н.Боуэном в 1928 г. (рис. 3)

Рис. 3. Реакционный ряд Боуэна

Из рассмотренного следует, что процессы превращения магмы, даже простого состава, в горные породы достаточно сложны и на них, кроме охлаждения, сильно влияют, разные факторы, например, колебания давления воды (РН2О ).

Таким образом, магма - это флюидно-силикатный расплав, эволюционирующий сложным путем, зависящим от большого количества факторов, полный учет которых в настоящее время невозможен. Следует еще раз подчеркнуть важную роль флюидов в жизни магматических расплавов, концентрация, состав и магмофильность которых определяют пути их эволюции и дифференциации. Летучие компоненты препятствуют полимеризации, т.е. застыванию расплавов, понижая температуру ее кристаллизации.

Наличие легко отделяемых летучих компонентов приводит к вулканическим процессам, трудно отделяемых - к интрузивным.