38. Движение морской воды, его причины, основные течения.
Вода океанов и морей находится в непрерывном движении. Эта циркуляция в поверхностных и глубинных зонах носит различный характер и определяется разными факторами.
Поверхностная циркуляция зависит в основном от ветров нижней атмосферы, влияющих на перемещение воды в самом верхнем слое. Характер циркуляции обусловлен перемещением атмосферы и вращением Земли. Поэтому в средних и низких широтах Северного полушария ветры образуют круговорот воды по часовой стрелке, а в южном - против. Это главные океанские антициклонические круговые течения, которые не меняются от временного изменения направления ветра, т.к. обладают огромной инерцией. Только в северной части Индийского океана течения меняются из-за смены летнего и зимнего муссонов. Наиболее мощное течение - это циркумполярное, окружающее Антарктиду кольцом и перемещающееся с запада на восток с расходом воды в 200 . 106 м3/ с, тогда как у других течений эта величина составляет (15-50) . 106 м3/с , кроме Гольфстрима 100 . 106 м3/с. Круговые течения в океанах особенно сильны и узки по ширине в западной половине круговорота и более расплывчаты в восточной. Они служат переносчиком тепла. Нагреваясь около экватора в северном полушарии, вода переносит тепло далеко на восток, пример тому - Гольфстрим..
Все круговые течения с их асимметрией обусловлены вращением Земли с запада на восток. В 1835 г. Жак де Кориолис установил влияние вращения Земли на движущуюся жидкость, которое в его честь было названо ускорением Кориолиса.
Суть этого влияния заключается в том, что направление вращения Земли в Северном и Южном полушарии имеет различную ориентацию, если смотреть с Северного и Южного полюсов соответственно. С Северного - против часовой стрелки, с Южного – по часовой. Неподвижное тело на экваторе вращается со скоростью 1670 км/час, при длине окружности в 40000 км. По направлениям к полюсам скорость вращения уменьшается и на полюсах равна 0. Поэтому, чтобы выполнить закон сохранения количества движения, необходимо, чтобы частица, движущаяся от экватора к полюсу, смещалась к востоку по сравнению с неподвижными частицами, а от полюса к экватору к западу, т. е. они отклоняются вправо по отношению к направлению движения. В Южном полушарии их движение будет, естественно, противоположным. Несмотря на то, что ускорение Кориолиса мало, его влияние на воды океана и атмосферу очень велико, т.к. ускорение Кориолиса действует в горизонтальной плоскости. Поэтому ускорение Кориолиса играет важную роль в движении океанских вод.
Главные поверхностные течения Мирового океана
Так как вода в океанах стратифицирована, то даже небольшие различия в ее плотности приводят воду в движение и сразу же она подвергается влиянию ускорения Кориолиса. Течения, где градиент давления, т.е. перепад плотностей, соответствует ускорению Кориолиса, называют геострофическим (плотностными). Обычно они направлены вдоль зон воды с разной плотностью. В результате нагона воды из-за дующих ветров и течений, уклон поверхности воды может достигать 1 м на 100 км. Такое явление известно в поперечном сечении Гольфстрима.
Течения, вызванные деятельностью ветра, уменьшают свою скорость с глубиной ввиду трения слоев в водной толще. На поверхности океана вода не движется точно в направлении ветра, а с действием ускорения Кориолиса, течение будет направлено под углом в 45° к направлению ветра, причем, чем глубже расположен слой воды, тем отклонение от направления ветра будет больше. Подобная закономерность была установлена в1902 г. В.В.Экманом и получила наименование спирали Экмана.
Апвеллинг представляет собой очень важное явление и заключается в подъеме воды в океанах с уровня термоклина или более глубоких слоев воды в силу разных причин.. Это и ветер, сгоняющий теплую воду с поверхности; и действие ускорения Кориолиса; и конфигурация береговой линии; и разница в плотности воды.
Значение процесса апвеллинга заключается в выносе к поверхности вод относительно богатых разнообразными питательными веществами, обогащая поверхностные слои компонентами, увеличивающими биопродуктивность. Поэтому апвеллинг, помимо других факторов, контролирует тип биогенных осадков: карбонатных, кремнистых, фосфатных. С апвеллингом связана низкая температура воды у побережий Калифорнии и Южной Америки, Северо-Западной и Юго-Западной Африки. В этих случаях важную роль играют пассаты, которые дуя с востока на запад постоянно сдувают нагревающийся поверхностный слой воды, а на смену ему поднимаются холодные глубинные воды.
Глубинная циркуляция отличается от поверхностной тем, что ее движущей силой является разница в плотности вод, обусловленная их охлаждением в высоких широтах, опусканием в придонные глубоководные области, а на смену этим холодным водам из низких широт поступают более нагретые воды. Так осуществляется глубинный круговорот, а придонные течения со скоростями 5-1- см/с были открыты в 1960 г.
Основными поставщиками холодных придонных вод являются районы Северной Атлантики и, особенно, Антарктиды. Холодные, плотные воды, сформировавшиеся вокруг Антарктиды составляют почти 60% всех вод Мирового океана, достигая примерно 45° с.ш. в Тихом и Атлантическом океанах. Эти воды богаты кислородом и обладают температурой +2 - +3°С. В их образовании большую роль играют морские льды, с соленостью не более 30‰. Следовательно, подледная вода становится солонее и плотнее, опускается на дно и движется в низкие широты. Т.к. придонные течения следуют вдоль линий равной глубины - изобатам, их называют контурными течениями и они обычно двигаются вдоль рельефа дна, а не перемещаются поперек придонных поднятий.
Описанные выше течения, вызванные разными причинами, местами движутся навстречу друг другу и тогда возникают зоны конвергенции. Когда же течения как бы расходятся в разные стороны, образуются зоны дивергенции, которые благодаря подъему холодных, плотных вод, обогащенных кислородом, в свою очередь, богаты биогенным веществом, что определяет характер осадконакопления в этих зонах. Хорошо известен экваториальный апвеллинг, вдоль которого наблюдается высокая биопродуктивность.
Приливы и отливы. периодические вертикальные колебания уровня океана или моря, являющиеся результатом изменения положений Луны и Солнца относительно Земли вкупе с эффектами вращения Земли и особенностями данного рельефа и проявляющееся в периодическом горизонтальном смещении водных масс.
- 1. Происхождение Вселенной. Экспериментальные основания теории горячей Вселенной, или Большого Взрыва. Эволюция Вселенной.
- 2. Строение и происхождение Солнечной системы, основные гипотезы.
- 3. Образование и внутреннее строение Земли. Сейсмологический метод и его роль в изучении Земли.
- 4. Строение земной коры и верхней мантии. Методы изучения.
- 5. Магнитное поле Земли, его параметры и возможное образование. Палеомагнитный метод.
- 6. Тепловое поле Земли
- 7. Литосфера, астеносфера. Особенности, выделение, роль в геологии.
- 8. Магматические горные породы и их классификация.
- 9. Особенности строения метаморфических горных пород. Стадии регионального метаморфизма.
- 10. Осадочные горные породы и их классификация.
- 11. Процессы выветривания, основные формы и факторы выветривания.
- 12. Взаимосвязь различных видов эоловых процессов.
- Дефляция и корразия.
- Эоловый перенос материала.
- Аккумуляция эолового материала.
- 13. Пустыни как области максимального развития эолового процесса. Типы пустынь. Формирование эолового рельефа и движение песков.
- 14. Геологическая деятельность поверхностных текущих вод. Образование делювия и пролювия.
- 15. Формирование речной долины, образование речных террас, их типы.
- 16. Виды эрозии в речных потоках, профиль равновесия реки и факторы его определяющие.
- 17. Образование, типы, режим и рельефообразующая деятельность ледников.
- 18. Водно-ледниковые отложения, особенности строения и рельефа перигляциальных областей.
- 19. Происхождение, типы и геологическая деятельность подземных вод.
- 20. Карстовые процессы, распространение, типы карста и его поверхностные формы.
- 21. Криогенные формы рельефа
- Термокарст
- 22. Основные понятия о многолетнемерзлых породах, распространение, мощность, типы подземных льдов, возникновение криолитозоны.
- Происхождение криолитозоны
- 23. Типы гравитационных геологических процессов на склонах.
- 24. Оползни, факторы их возникновения, морфология оползневых тел, меры борьбы с ними.
- 25. Дифференциация магмы и превращение ее в горную породу.
- 26. Продукты извержения вулканов и строение лавовых потоков.
- 27. Трещинный и ареальный типы вулканизма. Типы вулканических аппаратов и их строение.
- 28. Связь вулканизма с интрузивным магматизмом, понятие о магматическом очаге и дифференциации магмы.
- 29. Интрузивный магматизм и типы интрузивных тел.
- 30. Географическое распространение и геологическая позиция современного вулканизма.
- 31. Понятие о метаморфизме и его факторах, типы метаморфизма.
- 32. Основные черты рельефа океанского дна.
- 33. Строение пассивной континентальной окраины, ее происхождение.
- 34. Строение активных континентальных окраин, их происхождение.
- 35. Строение и рельеф срединно-океанских хребтов. Их происхождение.
- 36. Абиссальные равнины и их типы, распространение, гайоты.
- 37. Характеристика основных типов морского осадконакопления.
- 38. Движение морской воды, его причины, основные течения.
- 39. Приливы и отливы, причины возникновения, геологическая роль.
- 40. Закономерности волновых движений воды; волна и ее элементы, поведение волны на отмелом и приглубом берегу.
- 41. Геологическая роль организмов в процессах, протекающих в Мировом океане.
- 42. Биогенное осадконакопление.
- 43. Понятие о лизоклине, критической глубине карбонатонакопления и глубине карбонатной компенсации.
- 44. Глубоководное осадконакопление и его особенности.
- 45. Турбидные потоки, их происхождение и формирование флиша.
- 46. Разрушительная работа моря. Общая характеристика.
- 47. Формирование пляжей, прибрежные морские аккумулятивные формы рельефа.
- 48. Понятие о фациях осадочных пород.
- 49. Слой и слоистость. Взаимоотношение слоистых толщ. Трансгрессивное и регрессивное залегание отложений, их образование и выражение в геологическом разрезе.
- 50. Типы несогласий, их происхождение и выражение в разрезе и на геологической карте
- 51. Складчатые деформации. Элементы складки, типы и формы складок, их образование.
- 52. Разрывные деформации. Типы разрывных нарушений. Элементы разрыва, условия образования.
- 53. Понятия о землетрясениях, их параметры.
- 54. Географическое распространение и геологические обстановки возникновения землетрясений, сейсмофокальные зоны Беньоффа.
- 55. Характеристика континентов и океанов как важнейших структур земной коры.
- 56. Линейные вулканические архипелаги, их происхождение и строение, понятие о горячих точках и их значение для тектоники литосферных плит.
- 57. Тектоника литосферных плит, истоки, развитие и содержание.
- 58. Современные движения земной коры. Методы и результаты их изучения.
- 59. Тектонические процессы на дивергентных границах литосферных плит.
- 60. Тектонические процессы на конвергентных границах литосферных плит.