logo
ЛЕКЦИИ по орг

5.4.4. Выбор оптимального распределения надежности отдельных элементов ксно

Обычно стоимость отдельного элемента КСНО может быть представлена в виде зависимости

, (5.90)

где и ; — коэффициенты, позволяющие статистические данные аппроксимировать кривой; — вероятность отказа i-го элемента.

Вероятность безотказной работы КСНО при отсутствии резервирования может быть определена по формуле (для случая малых значений)

. (5.91)

Отсюда

. (5.92)

Суммарная стоимость КСНО складывается из стоимостей отдельных элементов:

. (5.93)

Следует выбрать вероятность отказа i-го элемента таким образом, чтобы суммарная стоимость КСНО была минимальной. Для этого необходимым условием является равенство нулю всех частных производных от С по :

(5.94)

т. е.

. (5.95)

Из (5.95) имеем

. (5.96)

Подставив вычисленное по формуле (5.96), в формулу (5.91), будем иметь

. (5.97)

Откуда при можно определить

. (5.98)

Выражение (5.96) с учетом (5.98) можно записать

. (5.99)

Полученная зависимость дает возможность найти оптимальное распределение надежности отдельных элементов при заданной надежности всего КСНО (или агрегата КСНО), а также совместно с уравнением (5.93) позволяет найти зависимость при оптимальном распределении надежности отдельных элементов. Имея зависимость и пользуясь методикой для выбора оптимальной надежности КСНО или его агрегатов, изложенной выше, можно определить оптимальную надежность всего КСНО.

Следует отметить, что выбор оптимального режима тренировок элементов КСНО, а также оптимального времени замены этих элементов может производиться независимо от выбора общей надежности всего комплекса или его отдельного агрегата.