69. Механизмы формирования, условия сохранения и разрушения залежей нефти и газа.
Согласно наиболее распространенному в настоящее время представлению об образовании нефтяных месторождений нефть первоначально возникла в особых материнских породах, откуда в дальнейшем мигрировала в пористые пласты-коллекторы и образовала залежи, явившиеся объектом промышленной разработки.
Этот процесс по И. М. Губкину происходил еще до возникновения антиклинальных складок. Образование последних привело к созданию нефтяных залежей, причем нефтесборной площадью были не только участки, расположенные в границах вновь возникших антиклиналей, но и соседние синклинальные зоны, зоны депрессий, откуда нефть и газы, находившиеся подводой, устремлялись к наивысшим точкам поднятая.
Дальнейшие тектонические движения могли вызвать изменение форм возникших антиклиналей и даже образование новых складок, что неизбежно должно было привести к перераспределению уже образовавшиеся внутри структуры нефтяных залежей, так как последние все время приспособляются к новым структурным условиям.
Разрушение структур в результате денудационных процессов влечет за собой разрушение нефтяных залежей. Однако разрушение последних происходит не только вследствие денудации. Несомненно, большую роль в этом отношении играют явления химического порядка, способствующие превращению нефти в малоподвижные твердые и полутвердые углеводороды, а также бактериальные процессы, которые в конечном итоге могут привести: к полному уничтожению нефти как полезного ископаемого.
На то, что процессы разрушения нефтяных залежей бактериями действительно происходят в природе, указывает образование в озокеритовых месторождениях альгаритов, являющихся продуктами бактериального разложения озокеритов. Общеизвестна также способность некоторых бактерий окислять в сравнительно короткий срок значительные количества нефти до воды или углекислоты.
Однако разрушением залежи нефти в результате денудации и биохимических процессов не исчерпываются те факторы, которые в конечном итоге приводят к уничтожению нефтяной залежь.
Естественное истощение нефтяной залежи может начаться еще до того, как вмещающие ее породы будут выведены на поверхность, вследствие образования трещин, по которым может происходить в достаточной мере интенсивная миграция нефти и газа из недр.
При отсутствии трещин сколько-нибудь значительное продвижение жидкой нефти поперек напластования пород вряд ли возможно.
Для газа возможности миграции, несомненно, более благоприятны. Однако мало вероятно, что они могут при ненарушенном трещинами, разрывами залегании пород привести к истощению залежи.
В толще осадочных пород, расположенных над нефтегазовыми залежами, встречаются пласты, все поры и трещины которых заполнены водой, а также пласты, норы и трещины которых частично или полностью свободны, т. е. содержат газ под тем или иным давлением. Через пласты, имеющие свободные, сообщающиеся между собой поры и трещины, происходит эффузия газа, а через вещество породы — диффузия. При наличии сплошных и пористых слоев явления эффузии и диффузии тесно сочетаются друг с другом.
В результате этих явлений сохранность газовой залежи при отсутствии интенсивных процессов, восполняющих потери газа была бы за геологическое время совершенно невозможной. Однако, поскольку практически нельзя допускать, что в пределах какой-либо осадочной толщи отсутствуют прослои, насыщенные водой, процессы эффузии в природе в таких масштабах не происходят, а диффузия газа по сравнению с эффузионным потоком весьма незначительна. Этим, повидимому, можно объяснить тот факт, что до настоящего времени в палеозойских отложениях известны огромные промышленные скопления газа.
Передвижение углеводородов сопровождается дальнейшими химическими и физическими преобразованиями, в результате которых и возникают разнообразные углеводородные соединения.
Длинный путь ведет от рыхлого песка и ила к образованию плотного песчаника, сланцеватой глины или известняка. Жизнь углеводородных соединений не отделима от жизни и развития содержащих их отложений. Это происходит не потому, что глины служат катализатором при образовании битумов, и не только потому, что образовавшиеся масла, смолы и асфальтены входят в химическое взаимодействие с окружающей породой, но и потому, что превращение осадка в породу меняет его физические свойства, а следовательно, меняет и его взаимоотношение с содержащимися в нем подвижными веществами. При погребении осадка происходит все большее его уплотнение и перемещение насыщающих его подвижных веществ в менее уплотненные зоны. Если нефтематеринская формация содержит в себе прослои и линзы песков или включения каких-нибудь других мало уплотняющихся осадков, то подвижные вещества перемещаются в них. Этому содействует капиллярный фактор. Более проницаемые породы с заключенными в них подвижными веществами оказываются окруженными слабопроницаемыми породами с субкапиллярными порами, заполненными водой. При таком сочетании вода стремится вытеснить нефть в более крупнопористые зоны и во всяком случае удержать в них нефть. Подвижные вещества дифференцируются. Газ и нефть всплывают над водой, образуя залежи этих полезных ископаемых.
Примером залежей нефти, образовавшихся, по-видимому, в материнской свите по описанной выше схеме, могут служить залежи в песчаных скоплениях, которые заключены в толще глин олиго-ценового возраста (майкопская свита) Кавказа.
В тех случаях, когда возникновение нефтяных углеводородных соединений связано с карбонатными илами, природным резервуаром может служить в целом толща, в которой произошло образование нефти и газа.
На первом же этапе формирования залежей может происходить не только их образование, но и разрушение. Процессы образования и разрушения тесно переплетаются между собой. Те же причины, которые вначале способствуют образованию залежи, а в дальнейшем могут явиться причиной ее разрушения.
Так, в период формирования нефти биологические процессы, т, е. всевозможные биохимические реакции, помогают образованию нефти и газа. Но те же процессы при развитии бактерий, разлагающих углеводороды, могут привести к превращению нефти целиком в газ, а иногда к уничтожению и газообразных углеводородов.
Стадия накопления осадка в морских бассейнах нередко сменяется эпохой мощных тектонических и горообразующих процессов или колебательных движений сравнительно малого масштаба. Толща пород, заключающая нефтематеринские слои, под действием тектонических сил сминается в складки. Антиклинальные складки, выведенные на поверхность, подвергаются интенсивному разрушению поверхностными агентами и разбиваются многочисленными разрывами. Динамическое давление распределяется по площади неравномерно. При орогенических процессах перемещение подвижных веществ совершается не только под влиянием геостатического, но и динамического давления.
Подвижные вещества могут перемещаться по порам, трещинам и разломам. При передвижении подвижных веществ по трещинам существенную роль приобретает гидравлический фактор. Поток воды, устремляющийся в область наименьшего давления, увлекает за собой различные углеводородные соединения, перенося их на значительные расстояния. При движении этого смешанного потока проявляется новый фактор — гравитационный. Под влиянием разности в плотностях различных веществ, входящих в состав потока, который передвигается по трещинам, они стремятся разделиться — дифференцироваться. Газ, находящийся в свободном (нерастворенном) состоянии, в своем движении обгоняет нефть и воду. Жидкие углеводороды, всплывая над водой, стремятся обогнать ее. Замыкание трещин, переходящих неоднократно вновь в зияющие, сопровождается резкими перепадами давления и усложнением процесса миграции за счет энергии расширяющегося газа.
В случае сообщения крупной трещины или разлома, по которому происходит подобное движение подвижных веществ, с поверхностью создается наибольший перепад давления; при этом описанный выше процесс протекает наиболее бурно, и на поверхности наблюдаются газовые выбросы, достигающие иногда весьма значительных размеров. Так как при своем движении поток захватывает, растирает и перемешивает породы, то и они вместе с ним в виде грязи извергаются на поверхность. Конусообразные скопления грязи на поверхности образуют сальзы и грифоны, а иногда огромные грязевые вулканы. Особенно резко такие процессы выражены в геосинклинальных областях.
Внерезервуарная миграция, носящая по своему масштабу региональный характер, является естественным следствием динамического и геостатического давлений на горные породы, содержащие углеводородные соединения. Внерезервуарная миграция — передвижение подвижных веществ по тонкопористым породам — не только ведет к перемещению нефти и газа в природные резервуары, но и может вызвать полное уничтожение залежей.
Слабее выражается внерезервуарная миграция в платформенных областях. Вместо мощных толщ терригенных отложений геосинклинальных областей здесь отлагаются осадки меньшей мощности с преобладанием карбонатов. Результатом проявления тектонических сил являются пологие изгибы осадочных толщ. Образующиеся складки более пологи, углы падения на их крыльях измеряются иногда долями градуса (превышение всего несколько метров на 1 км). Динамический фактор меньше влияет на процесс выжимания подвижных веществ, чем в геосинклинальной области. Внерезервуарная миграция затруднена не только из-за ослабления сил, вызывающих ее, но и из-за характера пород, слагающих разрез. Поэтому она протекает спокойнее и медленнее, чем в геосинклинальных областях, и проявляется в значительно меньшем диапазоне разреза.
В истории земли эпохи энергичного движения ее коры, эпохи складкообразования сменяются периодами относительного затишья в проявлении тектонических сил. Периоды относительного покоя отражаются и на процессе формирования залежей нефти и газа. Условия, вызывающие внерезервуарную миграцию, не исчезают полностью, уменьшается лишь их значение; внерезервуарная миграция не исчезает полностью, а лишь сокращается. Основное значение начинает приобретать внутрирезервуарная миграция, которая в периоды относительного покоя имеет основное значение в формировании залежей, хотя она существует и в периоды складкообразования.
Итак, в результате внерезервуарной миграции подвижные вещества могут попасть в природные резервуары. Здесь они продолжают перемещаться, т. е. происходит внутрирезервуарная миграция. При внутрирезервуарной миграции роль различных факторов, определяющих образование скоплений нефти и газа, зависит в основном от проницаемости коллектора, его насыщенности водой и от движения воды. Для хорошо проницаемых коллекторов, насыщенных водой, которая находится в покое, формирование залежей обусловливается гравитационным фактором. При наличии хотя бы небольшого уклона углеводородные соединения двигаются под кровлей вверх по ее уклону до встречи с ловушкой.
Растворенный газ выделяется из нефти или воды тогда, когда давление оказывается равным давлению насыщения; только в этом случае может образоваться газовая шапка или газовая залежь над водой. В резервуаре жидкость находится, как правило, под гидростатическим давлением. Наименьшее гидростатическое давление наблюдается в наиболее высоко поднятых частях резервуара, наибольшее — в наиболее опущенных. Следовательно, выделение растворенного газа из жидкости (нефти или воды) с образованием свободного скопления будет происходить в приподнятых участках резервуара, в сводах антиклинальных складок, у кровли выступов массивных резервуаров, в головах моноклинально падающих пластов (А. Л. Козлов).
При наличии в резервуаре ловушки на пути движения флюидов может образоваться залежь нефти и газа. Если при отсутствии движения воды любая слабо выраженная ловушка может служить местом формирования залежи, то при циркуляции воды условия скопления иные.
Здесь также обнаруживается разница в условиях формирования залежей в платформенных и геосинклинальных областях. В платформенных областях ловушками могут служить слабовыпуклые структурные изгибы, а роль экрана могут играть даже незначительные ухудшения проницаемости пород. Например, в Бугурусланском месторождении ловушкой для залежи служит структурный изгиб резервуара с наклоном пород, не превышающим нескольких метров на 1 км.
В геосинклинальных областях при хороню проницаемом коллекторе и большом градиенте давлений нефть и газ могут образовать скопления далеко не в каждом выпуклом брахиантиклинальном изгибе или экранированной моноклинали. Вследствие этого в пределах крупных антиклинальных зон с одним и тем же природным резервуаром в одних поднятиях образуются нефтяные залежи, в других — нефтяные залежи с газовыми шапками или чисто газовые залежи, а в некоторых поднятиях залежи отсутствуют совсем. Различным напором и неравномерной по интенсивности циркуляцией воды объясняется перемежаемость нефтеносных и водоносных песчаников в мощных песчано-глинистых толщах. Дифференциация нефтей и газов в процессе миграции особенно отчетливо проявляется при рассмотрении цепи ловушек, расположенных на одном структурном элементе.
При региональном подъеме пласта, вдоль которого расположены структуры одна выше другой, но со значительным прогибом между ними, будут наблюдаться следующие соотношения. В первой, более глубоко погруженной антиклинальной складке или куполе скапливается газ, так как ловушки, полностью заполненные газом, улавливать нефть не могут. Если свободный газ весь будет израсходован на заполнение первых двух снизу ловушек, то в следующей (третьей), более высоко залегающей, скопится нефть или нефть с остатками свободного газа в виде газовой шапки. В следующей ловушке вверх по восстанию пластов скопится нефть только с растворенным газом или нефть с водой. Если вся нефть оудет израсходована на заполнение предыдущих снизу ловушек, то последующие ловушки по пути движения газа и нефти будут заполнены только водой.
Эта закономерность отмечается в тех стратиграфических комплексах и районах, где пластовые давления в залежах нефти ниже давления насыщения газа.
Если в нефтегазовых залежах давление насыщения газа будет меньше пластового давления, то разделения нефти п газа в ловушках не произойдет. В этом случае самые погруженные ловушки будут заполнены нефтью с растворенным в ней газом. При дальнейшей миграции но цепочке постепенно повышающихся ловушек нефть может попасть в область, где пластовое давление меньше давления насыщения, тогда газ начнет выделяться из раствора и образовывать либо газовые шапки, либо чисто газовые залежи, оттесняя нефть в расположенные выше ловушки. В этом случае будет следующее распределение нефтяных и газовых залежей: самые погруженные ловушки заполнены нефтью, средние — газом или нефтью с газовыми шапками, выше по региональному подъему пласта ловушки снова заполнены нефтью с относительно повышенной плотностью, а самые верхние ловушки заполнены водой.
Рис. Принципиальная схема дифференциального улавливания нефти и газа в последовательной цепи ловушек (по С. П. Максимову).
Распределение нефти и газа в последовательной цепи ловушек подчинено единой закономерности дифференциального улавливания; вариант, изображенный на рис. а, является частным случаем общей закономерности.
Описанное явление, конечно, представляет собой лишь самую общую схему. В действительности процесс протекает в более сложных условиях, зависящих прежде всего от конкретной геологической обстановки и ее изменений во времени. Существенные изменения могут вноситься разновременностью образования ловушек, изменением направления регионального наклона пластов, глубин залегания и в связи с этим давлений и температур в залежах, выводом пластов на поверхность и т. д. Распределение залежей нефти и газа в соответствии с принципами дифференциального улавливания установлено во многих тектонических зонах как в Советском Союзе, так и в других странах.
Сказанное заставляет обратить особое внимание на геологическую историю развития той или иной нефтегазоносной территории. Закономерности распределения в ней залежей (и в частности размещение наиболее крупных залежей) теснейшим образом связаны не только с возникновением локальных поднятий, но и с региональным тектоническим планом и его изменениями во времени.
На первом этапе формирования залежей наиболее заполненными должны оказаться наиболее погруженные ловушки, стоящие на пути миграции углеводородов; расположенные выше ловушки будут заполнены водой. В дальнейшем при изменении структурного плана, наоборот, наиболее приподнятые ловушки могут оказаться местом, где будут концентрироваться углеводороды, поступающие за счет разрушения погруженных залежей. Размер и сохранение залежей в погруженных зонах будут определяться в этом случае размером и сохранением соответствующих ловушек. Таким образом, палео-тектонический анализ является одним из наиболее важных моментов, позволяющих установить закономерности распределения залежей нефти и газа в той или иной области. А знание таких закономерностей — это наиболее короткий и верный путь к открытию новых крупных залежей нефти и газа.
Ранее было отмечено, что при миграции углеводородов могут не только образовываться, но и разрушаться залежи нефти и газа. Многообразные процессы уничтожения углеводородов и разрушения их залежей М. К. Калинко (1964) условно разделил на две группы: 1) физические и 2) химические и биохимические.
Среди физических процессов разрушения залежей нефти и газа М. К. Калинко выделяет: 1) диффузию; 2) внерезервуарную фильтрацию по пустотным пространствам различного типа; 3) внутри-резервуарную фильтрацию под влиянием движения подземных вод или сил всплывания. Здесь автор выделяет два принципиальных случая: а) исчезновение ловушки под влиянием тектонических движений и б) исчезновение ловушки вследствие вскрытия нефте-газосодержащих пластов процессами эрозии. Условия развития этих процессов и их скорости неодинаковы для нефти и газа вследствие различных физических свойств последних.
Развитие химических и биохимических процессов обусловливается геотектоническими условиями. Поскольку эти процессы разрушения углеводородов в естественных условиях развиваются сравнительно медленно, конечный эффект во многом зависит от длительности пребывания нефтегазосодержащих пластов в той или иной зоне гипергенеза. Разрушение залежей движущимися водами, химические и биохимические процессы развиваются только на определенных этапах геологической истории того или иного региона, чаще всего во время интенсивных восходящих движений.
Среди всех процессов разрушения залежей, по мнению М. К. Калинко, постоянными являются процессы диффузии и фильтрации, и поэтому они оказывают наибольшее влияние на залежи в течение всего времени существования последних. На отдельных этапах гидродинамические, химические и биохимические процессы могут подавлять влияние процессов диффузии и фильтрации и иметь решающее значение, обусловливая полное разрушение или, наоборот, сохранение залежи.
- 1. Нефтегазоносность Ближнего и Среднего Востока. Уникальные месторождения.
- 2. Формирование подземных вод. Гипотезы происхождения подземных рассолов.
- 3. Методы подсчёта запасов газа. Объёмный метод, метод по падению давления, методика оценки ресурсов ув по водорастворённым газам.
- 4. Формы изображения химического состава вод, правила их химического наименования. Химическая классификация вод по в.А.Суслину.
- 5.2. Пористость горных пород, методы её определения.
- 6. Структурно-картированное бурение (цел, задачи, технология).
- 7. Компонентный состав свободных и попутных газов.
- 8. Сибирская платформа. Основные черты геологического строения и перспективы нефтегазоносности.
- 9. Методика построения структурных карт.
- 10. Поисковые гидрогеологические критерии нефтегазоносности. ?
- 11. Сейсморазведка. Основные методы и их физическая сущность. Способы возбуждения и регистрации упругих колебаний. Возможности применения метода.
- 12. Построение профильных геологических разрезов глубокозалегающих пластов по скважинам.
- 13. Зоны нефтегазонакопления и нефтегазообразования. Критерии их выделения. Примеры таких зон. ?
- 14. Наиболее распространённые осадочные породы, их происхождение, ёмкостно-филътрационные свойства.
- 15. Природоохранные мероприятия при геолого-разведочных работах на нефть и газ.
- 16. Стадии поисково-разведочного процесса. Их характеристика.
- 17.Методы определения пластовых и забойных давлений. Карты приведённых давлений.
- 18. Битумы и битумоиды. Их состав, генезис и принципиальные различия.
- 19. Элементарный и компонентный состав нефти.
- 20. Методы испытания скважин.
- 22. Шкала катагенеза органического вещества осадочных пород. ?
- 23. Виды режимов пластов. Условия проявления различных режимов. Особенности режимов газовых пластов.
- 24. Гравиразведка. Методика исследований при поисках нефти и газа.
- 25. Углеводородный состав нефти.
- 26. Структурно-тектонические месторождения платформ. Принципы систематики. Характерные типы залежи. ?
- 27. Методика и стадийность геохимических поисков нефтегазовых месторождений.
- 28. Горючие полезные ископаемые. Основные группы, представления об условиях образования.
- 29. Пьезопроводность. Методы ее определения.
- 30. Пробная эксплуатация нефтяных и газовых залежей. Методы воздействия на пласт.
- 32. Классификация нгб: внутриплатформенные бассейны; бассейны эпиплатформенных орегенов; Бассейны, расположенные на стыке складчатых областей и платформ.
- 33. Глубина скважины, конструкция скважины. Порядок опробования нефтегазоносных горизонтов.
- 34. Геологическое строение и нефтегазоносность Западно-Сибирской нгп. Её роль в нефтегазовом потенциале России.
- 37. Теоретическое обоснование геохимичиских методов поисков нефти и газа.
- 39. Характеристика зон внк, гвк,гнк. Методы нахождения поверхностей внк,гвк,гнк.
- 38. Основные нефтегазоносные комплексы и горизонты Восточной Сибири.
- 40. Обзор основных нефтегазоносных бассейнов Северной Америки.
- 41. Гидрогеологический цикл и его этапы. Роль этапов в формировании залежей нефти и газа.
- 42. Подготовка скважин к опробованию и его производство.
- 45. Электроразведка. Физическая сущность и основные методы. Возможности применения метода.
- 43. 56. Обзор ведущих нефтегазоносных бассейнов Европы и зарубежной Азии.
- 46. Основные обстановки осадконакопления. Условия накопления и сохранения органического вещества.
- 47. Типы нгб, особенности их строения и характеристика условий генерации нефти и газа, аккумуляция и сохранность залежей.
- 48. Радиометрия. Сущность метода и основные модификации. Принцип устройства аппаратуры и круг решаемых задач.
- 49. Вертикальная зональность нефтегазообразования.
- 50. Принцип районирования и выделения нефтегазоносных территорий.
- 51. Определение удельного электрического сопротивления пластов по диаграммам индукционного каротажа.
- 52. Природные горючие газы. Формы их нахождения (свободные, попутные, водорастворённые, рассеяные, газогидраты) и разнообразие их состава.
- 53. Схема дифференциального улавливания ув при латеральной миграции.
- 54. Подсчёт прогнозных ресурсов нефти и газа. ?
- 55. Осадочно-породные бассейны, их роль в образовании скоплений ув.
- 57. Причины и признаки разрушения залежей нефти и газа.
- 58. Литолого-стратиграфические залежи нефти и газа. Условия их возникновения и морфологическое разнообразие.
- 59. Аргументация сторонников органического и неорганического происхождения нефти.
- 60. Основные нгб Южной Америки.
- 61. Виды и формы миграции углеводородов (стадийность, фазовое состояние ув и характер миграции).
- 62. Крупнейшие месторождения нефти и газа в России.
- 65.Нефтегазоносные бассейны рифтовых систем.
- 66. Буровые установки и сооружения. Классификация буровых установок, краткая характеристика современных буровых установок, буровые вышки.
- 69. Механизмы формирования, условия сохранения и разрушения залежей нефти и газа.
- 70. Каустобиолиты. Принципы классификации.
- 76.Роль нефтегазоносности стран Персидского залива в мировой экономики.
- 77. Силы препятствующие движению жидкости в пористой среде.