Волны зыби
Волны зыби создаются движением частиц воды по орбитам, имеющим форму окружности или эллипса, причем точки, находящиеся на одном и том же горизонте, движутся по орбитам одинакового радиуса, но с последовательным сдвигом фазы на каждой орбите, а находящиеся на одной вертикали движутся в одной и той же фазе, но по орбитам с уменьшающимся в глубину радиусом. Теория дает формулу для определения этого уменьшения:
2 kz
гг = г0е~*, (10.10)
где rz и г0 — радиусы орбит на горизонте z и на поверхности, м; А, — длина волны, м. Из формулы следует, что на горизонте z, равном
длине волны, радиус орбиты равен всего двум тысячным от радиуса на поверхности, а на горизонте Х/2 — ъ половину длины волны — У23, т. е. около 4 %. Поэтому обычно считают, что такая волна распространяется в слое толщиной в половину длины волны.
С
Рис. 10.8. Профиль поверхности трохоидальной волны (зыби): сплошная линия — профиль волны в начальный момент времени, пунктир — тот же профиль, сместившийся в направлении распространения волны (показано стрелкой); цифры без штриха — номера частиц на орбитах в начальный момент, цифры со штрихом — те же частицы на новом положении
хема волны зыби в вертикальной плоскости показана на рис 10.8. Огибающая кривая, на которой лежат частицы, движущиеся по орбитам, носит название трохоиды, поэтому и волна зыби называется трохоидальной.К основным элементам волны относятся: длина X (м) — кратчайшее расстояние между двумя соседними вершинами — самыми высокими точками гребней, возвышенных частей воды (или между двумя соседними подошвами — самыми низкими участками ложбины волны);
з высота h (м) — разность уровней вер- § шины и подошвы; крутизна а — отно- “ шение высоты волны к ее длине (h/X); I волновой уровень — линия, делящая пло- "о щадь трохоиды пополам. Движение вол- <= ны характеризуют: период х (с) — время, за которое волна проходит расстояние, равное своей длине (или время между прохождением двух вершин через одну и ту же вертикаль). Частота 1/х (Гц) — число колебаний в одну секунду. Фазовая скорость с = Х/т (м/с) — расстояние, проходимое волной (вершиной) за одну секунду. Направление волны считается «в компас» (как и направление ветра), т. е. откуда идет волна, и измеряется или в градусах или по румбам (чаще всего — по восьми). Волны зыби чаще всего бывают двумерными, т. е. изменяются лишь по линии распространения и по высоте. В направлении, перпендикулярном этой плоскости, вдоль гребня, или фронта волны, изменений не происходит. Это определение дается потому, что в океане преобладают трехмерные волны, в которых изменения
высоты (и длины) происходят и вдоль фронта. Это преимущественно ветровые волны и волны типа толчеи (стоячие волны). В двумерной волне можно определить и волновой луч — линию, перпендикулярную фронту волны.
В установившейся системе волн зыби действуют лишь две силы: тяжести и центробежная сила орбитального движения частиц. Поэтому существуют теоретические формулы связи между элементами волны:
с = (io.il)
X = /1^ ; (Ю.12)
V 8
* = 1М’ (10ЛЗ)
где щ — орбитальная скорость частицы на поверхности. Приведенный выше закон затухания волнения с глубиной может быть записан как
Inz
hz=he~, (10.14)
так как высота волны h представляет собой диаметр орбиты, т. е. 2г. Поэтому и орбитальная скорость на горизонте z может быть выражена через орбитальную скорость на поверхности:
2 kz
uz = и0е~ , (10.15)
Из этих формул может быть получена и энергия волны. Полную волцовую энергию, заключенную в объеме воды от поверхности на всю толщу распространения волнового движения (практически на половину длины волны) протяженностью по фронту В и в направлении движения на одну длину волны, определяют по формуле
Е = ^т.и\ (Ю.16)
где р — плотность воды.
Вертикальное строение волны можно представить и как картину деформации структуры слоя воды (это хорошо показано поплавками на рис. 10.9).
Рис. 10.9. Вертикальное строение волны зыби. На поверхности волны показаны поплавки, пунктиром показаны орбиты частиц
Воздействуя на поверхность воды, ветер, благодаря трению о воду, создает касательные напряжения и влекущие усилия, а также вызывает местные колебания давления воздуха. В результате на поверхности воды даже при ветре, имеющем скорость 1 м/с, образуются маленькие волны высотой, измеряемой в миллиметрах, и длиной — в сантиметрах. Эти едва зародившиеся волны имеют вид ряби. Так как существование таких волн связано с поверхностным натяжением, их называют капиллярными. Если ветер прошел над водой кратковременным порывом, то образованные им пятна ряби исчезают с прекращением ветра — поверхностное натяжение стремится сократить площадь поверхности воды. Если ветер устойчивый, то капиллярные волны увеличиваются в размерах, прежде всего по длине. Рост волн приводит к объединению их в группы и удлинению до нескольких метров. Волны становятся гравитационными.
Процессы передачи энергии от воздуха к воде и начальные стадии развития волн достаточно сложны. Существенное отличие ветрового волнения от зыби состоит в том, что оно развивается под действием не двух, а многих сил. Добавляется влияние ветра (трение и давление). Это приводит к нарушению симметрии формы волны — передний склон становится круче заднего, следовательно, и короче его (рис. 10.10). Частицы воды приобретают поступательную скорость и, закончив один оборот, возвращаются не в точку начала движения, а оказываются чуть впереди в сторону распространения волны — орбита не замыкается. Эта асимметрия профиля волны, увеличение крутизны переднего склона может дойти до срыва гребня, до образования пенного барашка. Наконец, из-за того что скорость ветра часто неравномерна вдоль фронта (гребня) волны, становится неравномерной и высота волны вдоль гребня, иначе говоря, волна оказывается не двумерной, а трехмерной. Вот такие волны и встречаются в море чаще всего.
Рис. 10.10. Профиль поверхности ветровой волны. Стрелка показывает направление ветра и распространения волны
Размеры трехмерных волн тем больше, чем ветер сильнее, продолжительнее и чем больше его разгон, т. е. расстояние, которое он пробегает над водой (эта дистанция зависит от его направления и размера самого моря). Наибольшие высоты волн наблюдаются в районах с частыми и продолжительными штормами. Обширные площади сильного волнения расположены в умеренных широтах,
которые даже получили название «ревущие сороковые». Интенсивное волнение часто наблюдается в районе Антарктического циркумполярного течения, в области квазистационарных атмосферных фронтов и т. д. Самые большие высоты волн — 34 м — встречались в середине северной части Тихого океана, самые большие длины — около 800 м — у южных берегов Британских островов и в экваториальной части Атлантического океана. Отмечались также гигантские волны у южных берегов Африки, ставшие причиной катастроф нескольких судов, «волны-убийцы», единичные волны высотой больше 20 м. Однако в большинстве случаев высоты волн не достигают и 4 м, а волны выше 7,5 м встречаются довольно редко. Обычная длина больших волн тоже значительно меньше максимальных значений: 130—170 м.
Измерение элементов волн связано с большими техническими трудностями, к тому же измерения в одной точке мало характеризуют все трехмерное волновое поле. Лучший способ его изучения в настоящее время — спутниковая альтиметрия, которая дает полную картину топографии волновой поверхности моря вдоль орбиты спутника в момент его пролета с погрешностью до нескольких сантиметров. Более того, современные численные волновые модели по высоте волн и скорости их распространения в океане позволяют получить достоверную картину скорости и направления приводного ветра. В массовых наблюдениях для качественной оценки размеров волнения в баллах до сих пор широко пользуются и приближенными приемами (табл. 10.4).
Таблица 10.4. Шкала степени волнения Высота волны *, м Балл степени волнения Характеристика волнения 0 0 Штиль, волнение отсутствует До 0,25 I Слабое 0,25—0,75 II Умеренное 0,75-1,25 III » 1,25-2,0 IV Значительное 2,0-3,5 V » 3,5-6,0 VI Сильное 6,0-8,5 VII » 8,5-11,0 VIII Очень сильное 11,0 и более IX Исключительное * Высота наиболее крупных волн.
- Isbn 978-5-06-005815-4 © фгуп «Издательство «Высшая школа», 2007
- Предисловие
- Введение
- Вода в природе и жизни человека
- Водные объекты. Понятие о гидросфере
- Гидрологический режим и гидрологические процессы
- Науки о природных водах
- Методы гидрологических исследований
- Использование природных вод и практическое значение гидрологии
- 2. В числителе приведено полное, в знаменателе — безвозвратное водопотребление.
- Глава 1 химические и физические свойства природных вод
- Вода как вещество, ее молекулярная структура и изотопный состав
- 1.2. Химические свойства воды. Вода как растворитель
- 1.3. Физические свойства воды 1.3.1. Агрегатные состояния воды и фазовые переходы
- Плотность воды
- Тепловые свойства воды
- Некоторые другие физические свойства воды
- Глава 2 физические основы гидрологических процессов
- Фундаментальные законы физики и их использование при изучении водных объектов
- Водный баланс
- Баланс содержащихся в воде веществ
- Тепловой баланс
- Основные закономерности движения природных вод
- Классификация видов движения воды
- Расход, энергия, работа и мощность водных потоков
- Силы, действующие в водных объектах
- Уравнение движения водного потока
- Вертикальная устойчивость вод
- Глава 3 круговорот воды в природе и водные ресурсы земли
- Вода на земном шаре
- Современные и ожидаемые изменения климата и гидросферы земли
- Круговорот теплоты на земном шаре и роль в нем природных вод
- Круговорот воды на земном шаре
- И водные ресурсы Земли», 1974)
- Вод в грунтах
- Круговорот содержащихся в воде веществ
- Влияние гидрологических процессов на природные условия
- Водные ресурсы земного шара, частей света и россии
- Та блица 3.6. Средние многолетние (1930—2000) водные ресурсы России*
- Глава 4 гидрология ледников
- Происхождение ледников и их распространение на земном шаре
- Типы ледников
- Образование и строение ледников
- Питание и абляция ледников, баланс льда и воды в ледниках
- Режим и движение ледников
- Роль ледников в питании и режиме рек. Практическое значение горных ледников
- Глава 5 гидрология подземных вод
- Происхождение подземных вод и их распространение на земном шаре
- Физические и водные свойства грунтов. Виды воды в порах грунтов
- Физические свойства грунтов
- Виды воды в порах грунта
- 5.2.3. Водные свойства грунтов
- Классификация подземных вод. Типы подземных вод по характеру залегания
- Воды зоны аэрации. Почвенные воды, верховодка, капиллярная зона
- Воды зоны насыщения. Грунтовые воды
- 5.3.5. Другие типы подземных вод
- Движение подземных вод
- Водный баланс и режим подземных вод
- Водный баланс подземных вод
- 5.5.2. Водный режим зоны аэрации
- Режим грунтовых вод
- Провинции: а — кратковременного питания, б— сезонного питания, в — круглогодичного питания (I—XII — месяцы)
- Взаимодействие поверхностных и подземных вод. Роль подземных вод в питании рек.
- Практическое значение и охрана подземных вод
- Глава 6 гидрология рек
- Реки и их распространение на земном шаре
- Водосбор и бассейн реки
- По линии а — б:
- Сток; 8 — русла рек
- Морфометрические характеристики бассейна реки
- Физико-географические и геологические характеристики бассейна реки
- Река и речная сеть
- Долина и русло реки
- Продольный профиль реки
- Плес; Пр — перекат
- Питание рек
- Виды питания рек
- Классификация рек по видам питания
- Расходование воды в бассейне реки
- Водный баланс бассейна реки
- Уравнение водного баланса бассейна реки
- Структура водного баланса бассейна реки
- Водный режим рек
- Виды колебаний водности рек
- 1 Числитель — данные за 1942—1955 гг., знаменатель — за 1956—1969 гг. 2 Данные за 1941— 1967 гг. 3 Данные за 1968—1987 гг. Прочерк означает отсутствие данных.
- Фазы водного режима рек. Половодье, паводки, межень
- Расчленение гидрографа по видам питания
- Классификация рек по водному режиму
- Типы: а — дальневосточный (р. Витим, г. Бодайбо, 1937 г.); 6 — тянь-шанский (р. Терек, с. Казбеги,
- 1937 Г.) (I—XII — месяцы)
- Речной сток
- Составляющие речного стока
- Факторы и количественные характеристики стока воды
- Пространственное распределение стока воды на территории снг
- Движение воды в реках
- Распределение скоростей течения в речном потоке
- Динамика речного потока
- Закономерности трансформации паводков
- Движение речных наносов
- Происхождение, характеристики и классификация речных наносов
- Частиц, мм 1,0 0,5 0,2 0,1 0,05 0,01 0,005 0,001
- Движение влекомых наносов
- Движение взвешенных наносов
- Сток наносов
- И связи между ними (б):
- Русловые процессы
- Физические причины и типизация русловых процессов
- Микроформы речного русла и их изменения
- Мезоформы речного русла и их изменения
- Макроформы речного русла и их изменения
- Деформации продольного профиля русла
- Устойчивость речного русла
- Термический и ледовый режим рек 6.12.1. Тепловой баланс участка реки
- Ледовые явления
- Основные черты гидрохимического и гидробиологического режима рек
- Гидрохимический режим рек
- Гидробиологические особенности рек
- Устья рек
- Факторы формирования, классификация и районирование устьев рек
- С блокирующей косой
- Особенности гидрологического режима устьевого участка реки
- Особенности гидрологического режима устьевого взморья
- Практическое значение рек. Влияние хозяйственной деятельности на режим рек
- Практическое значение рек и типизация хозяйственных мероприятий, влияющих на речной сток
- Влияние на речной сток хозяйственной деятельности на поверхности речных бассейнов
- Влияние на речной сток хозяйственной деятельности, связанной с непосредственным использованием речных вод
- 2 4 6 8 1012141618202224 Часы
- 6.15.4. Гидролого-экологические последствия антропогенных изменений стока рек
- Глава 7 гидрология озер
- 7.1. Озера и их распространение на земном шаре
- Профиль берега
- Водный баланс озер
- Уравнение водного баланса озера
- Структура водного баланса озера
- Водообмен в озере
- Колебания уровня воды в озерах
- Термический и ледовый режим озер
- Тепловой баланс озер
- Термическая классификация озер
- Термический режим озер в условиях умеренного климата
- Ледовые явления на озерах
- Основные особенности гидрохимических и гидробиологических условий. Донные отложения озер
- Гидрохимические характеристики озер
- Гидробиологические характеристики озер
- Наносы и донные отложения в озерах
- Водные массы озер
- Изменения гидрологического режима каспийского и аральского морей
- Проблемы, связанные с судьбой Каспийского и Аральского морей
- Каспийское море
- Влияние озер на речной сток. Хозяйственное использование озер
- Глава 8 гидрология водохранилищ
- Назначение водохранилищ и их размещение на земном шаре
- Типы водохранилищ
- Основные характеристики водохранилищ
- Водный режим водохранилищ
- Термический и ледовый режим водохранилищ
- Гидрохимический и гидробиологический режим водохранилищ
- Заиление водохранилищ и переформирование их берегов
- Водные массы водохранилищ
- Влияние водохранилищ на речной сток и окружающую природную среду
- Глава 9 гидрология болот
- Происхождение болот и их распространение на земном шаре
- Типы болот
- Строение, морфология и гидрография торфяных болот
- Развитие торфяного болота
- Фазы: 7 —низинная; 2—переходная; 3— 6— верховая;
- Водный баланс и гидрологический режим болот
- Влияние болот и их осушения на речной сток. Практическое значение болот
- Глава 10 гидрология океанов и морей
- Мировой океан и его части. Классификация морей
- Происхождение, строение и рельеф дна мирового океана. Донные отложения
- Происхождение ложа океана
- Рельеф дна Мирового океана
- Донные отложения
- Водный баланс мирового океана
- Солевой состав и соленость вод океана
- Солевой состав вод океана
- Распределение солености в Мировом океане
- Термический режим мирового океана
- Тепловой баланс Мирового океана
- Распределение температуры в Мировом океане
- 2,7 3,8 5,5 4,4 2,9 2,2 Южное полушарие
- Факторы, определяющие плотность морской воды
- Распределение плотности в Мировом океане
- Морские льды
- Ледообразование в море
- Физические свойства морского льда
- Движение льдов
- 10.7.4. Ледовитость океанов и морей
- Оптические свойства морской воды
- Акустические свойства морской воды
- Волны зыби
- Деформация волн у берега
- Волны цунами
- Внутренние волны
- Приливы
- Основные элементы приливов
- Приливообразующая сила
- Статическая и динамическая теории приливов. Строение приливной волны и приливные течения
- Разложение уравнения приливной волны. Гармонические постоянные. Таблицы приливов
- Приливы в ограниченном водоеме. Сейши
- Морские течения
- 10.12.1. Силы, формирующие течения. Классификация морских течений
- Теория ветровых течений
- Течение
- Плотностные течения
- Циркуляция вод в Мировом океане
- Уровень океанов и морей
- Кратковременные колебания уровня
- Сезонные колебания уровня
- Водные массы океана
- Основы учения о водных массах
- Основы г, s-анализа водных масс
- Водные массы Мирового океана
- Взаимодействие океана и атмосферы. Океан и климат
- Ресурсы мирового океана и его экологическое состояние
- Ресурсы Мирового океана
- Литература Основная
- Богословский б. Б. И др. Общая гидрология,— ji.: Гидрометеоиздат, 1984,—356 с.
- VI Всероссийский гидрологический съезд. 28 сентября — 1 октября 2004 г. Санкт- Петербург. Тезисы докладов. СПб.: Гидрометеоиздат, 2004.
- Типы рек