Расходование воды в бассейне реки
Поступающие на поверхность бассейна дождевые воды, а также талые снеговые и ледниковые воды частично стекают в виде поверхностного (склонового и речного) стока, а частично расходуются на испарение и инфильтрацию.
Потери атмосферных вод на испарение признаются для данного речного бассейна безвозвратными, так как считается, что они уносятся за пределы бассейна воздушными потоками. Воды, поступившие в грунт в результате инфильтрации, считаются «потерями» лишь для данного участка водосбора и для конкретного дождя или периода снеготаяния. Они затем поступят в речное русло в процессе питания реки подземными водами.
Испарение с водной поверхности по своей величине приближается к испаряемости z0, т. е. максимально возможному при данных климатических условиях испарению, зависящему от радиационного баланса. Испарение с водной поверхности тем больше, чем меньше влажность воздуха (и больше дефицит влажности) и больше скорость ветра.
Величина годового испарения с водной поверхности для территории бывшего СССР зависит от природной зоны и в среднем равна: в тундре 200—350 мм, в лесной зоне 350—650, в степной зоне 650—1000, в полупустыне и пустыне 1000—1800 мм. Эти величины и составляют потери речного стока на испарение с поверхности водотоков (рек и каналов) и водоемов (озер и водохранилищ).
Испарение с водной поверхности в конкретных условиях может быть определено с помощью метода водного баланса с учетом величины снижения в результате испарения уровня воды в естественном водоеме или искусственном испарителе (см. разд. 2.2), с помощью метода теплового баланса путем расчета теплоты, затраченной на испарение воды (см. разд. 2.4), с помощью эмпирических формул. Среди последних широко используется формула Б. Д. Зай- кова:
Z = 0,14w(eo- е20о)(1 +0,72Ж200), (6.13)
где z — испарение, мм; е0 — среднее значение максимальной упругости водяного пара, вычисленное по температуре поверхности воды в водоеме, гПа; еш — средняя упругость водяного пара (абсолютная влажность воздуха) на высоте 200 см над водоемом, гПа; W200 — средняя скорость ветра на высоте 200 см над водоемом, м/с; п — число суток в расчетном интервале времени. В формуле (6.13) разность упругостей водяного пара е0 - еш может быть заменена величиной, пропорциональной дефициту влажности воздуха cDm).
Испарение с поверхности снега и льда зависит от тех же факторов, что и испарение с водной поверхности, но вследствие низкой температуры испаряющей поверхности значительно менее интенсивно. Оно составляет за зиму всего 20—30 мм, т. е. в десятки раз меньше испарения с поверхности воды.
Для измерения испарения с поверхности снега применяют специальные испарители, при этом используется весовой метод. На практике же обычно применяют эмпирическую зависимость, аналогичную формуле (6.13).
Испарение с поверхности почвы, не покрытой растительностью, определяется метеорологическими условиями и интенсивностью поступления воды к поверхности почвы из более глубоких слоев грунта. При этом испарение осуществляется не только непосредственно с поверхности почвы, но и с частиц ниже поверхности почвы и с «капиллярной каймы». Испарение с поверхности почвы обычно тем больше, чем больше влажность почвы, дефицит влажности воздуха и скорость ветра. Оно возрастает после дождей и при повышении уровня грунтовых вод.
Потери воды на испарение с поверхности почвы могут быть определены с помощью почвенного испарителя. Объем испарившейся с почвы воды рассчитывают по изменению массы почвенного монолита, помещенного в испаритель.
Физиологическое испарение растительным покровом (транспирация) включает три стадии: поглощение корневой системой растений почвенной влаги, подъем воды по стеблям, испарение с поверхности листьев. С увеличением глубины корневой системы растений и увеличением размеров листьев и густоты лиственного покрова транспирация увеличивается.
Интенсивность транспирации зависит и от типа растительности. Разные растения расходуют различные объемы воды на испарение. У них различно и отношение массы испаряемой ими воды к массе прироста сухого вещества, называемое транспирационным коэффициентом. Этот коэффициент характеризует так называемое продуктивное испарение. Он наибольший у риса, наименьший — у хвойных деревьев.
За вегетационный период растения могут испарять значительные объемы воды. Так, годовой слой испарения для пшеницы составляет 250—300 мм, березы — 150—200, хвойных деревьев — 150—300 мм.
Величина транспирации может быть определена следующим образом с помощью почвенного испарителя. Измеряют отдельно суммарное испарение с поверхности почвы и растительности (в этом случае монолит почвы имеет живые растения) и испарение с поверхности почвы под растениями (в этом случае измеряют испарение с монолита почвы, над которым подвешены срезанные растения, чем достигается естественная затененность почвы). Разница в величинах испарения, определенного двумя описанными способами, даст величину транспирации.
Суммарное испарение складывается из испарения с поверхности почвы, транспирации и испарения с крон деревьев (последние два вида испарения часто учитывают совместно). Суммарное испарение играет наиболее важную роль в определении потерь стока в пределах речных бассейнов, и его расчету в гидрологии уделяют наибольшее внимание.
Для определения суммарного испарения используют две группы методов. В первой из них применяют зависимости среднего многолетнего годового суммарного испарения z от годовых осадков х и испаряемости z0- М. И. Будыко предложил максимально возможное испарение, т. е. испаряемость z0, выражать через среднее многолетнее годовое значение радиационного баланса R и удельную теплоту испарения 1ИСП. Уравнение Будыко связывает величину испарения с величинами осадков, радиационного баланса и теплотой испарения: z=/(x, R, Ьисп). Для разных географических пунктов такая связь получается разной в зависимости от величины R, определяемой в основном солнечной радиацией, изменяющейся с изменением широты места (см. рис. 3.1).
Вторая группа методов основана на использовании эмпирических связей, например средних годовых и месячных величин суммарного испарения с соответствующими значениями температуры и влажности воздуха (метод А. Р. Константинова).
На территории бывшего СССР суммарное испарение изменяется в зависимости от климатических условий местности (количества осадков и радиационного баланса). В среднем для различных природных зон характерны такие величины годового суммарного испарения: тундра и лесотундра — 100—300 мм, лесная зона — 300—500, лесостепь и степь — 300—500, полупустыня — 150—300 мм.
Чем суше климат, тем больше разница между испаряемостью, или предельно возможным испарением, и фактическим суммарным испарением. В тундре испарение приближается к испаряемости, в пустынях при крайне малых атмосферных осадках оно намного меньше испаряемости. В Сахаре, например, при испаряемости 2000— 2500 мм фактическое испарение менее 100 мм.
Инфильтрация в речных бассейнах зависит от поступления дождевых или талых вод и от фильтрационных свойств подстилающих Фунтов. Механизм инфильтрации был подробно описан в разделе 5.4. Роль инфильтрации в водном балансе участка речного бассейна была рассмотрена в разд. 5.5.1. В отдельные периоды на инфильтрацию может расходоваться значительно больше воды, чем на испарение. Интенсивность инфильтрации во многом зависит от состояния грунта. Она уменьшается с увеличением влажности грунта и при его промерзании.
- Isbn 978-5-06-005815-4 © фгуп «Издательство «Высшая школа», 2007
- Предисловие
- Введение
- Вода в природе и жизни человека
- Водные объекты. Понятие о гидросфере
- Гидрологический режим и гидрологические процессы
- Науки о природных водах
- Методы гидрологических исследований
- Использование природных вод и практическое значение гидрологии
- 2. В числителе приведено полное, в знаменателе — безвозвратное водопотребление.
- Глава 1 химические и физические свойства природных вод
- Вода как вещество, ее молекулярная структура и изотопный состав
- 1.2. Химические свойства воды. Вода как растворитель
- 1.3. Физические свойства воды 1.3.1. Агрегатные состояния воды и фазовые переходы
- Плотность воды
- Тепловые свойства воды
- Некоторые другие физические свойства воды
- Глава 2 физические основы гидрологических процессов
- Фундаментальные законы физики и их использование при изучении водных объектов
- Водный баланс
- Баланс содержащихся в воде веществ
- Тепловой баланс
- Основные закономерности движения природных вод
- Классификация видов движения воды
- Расход, энергия, работа и мощность водных потоков
- Силы, действующие в водных объектах
- Уравнение движения водного потока
- Вертикальная устойчивость вод
- Глава 3 круговорот воды в природе и водные ресурсы земли
- Вода на земном шаре
- Современные и ожидаемые изменения климата и гидросферы земли
- Круговорот теплоты на земном шаре и роль в нем природных вод
- Круговорот воды на земном шаре
- И водные ресурсы Земли», 1974)
- Вод в грунтах
- Круговорот содержащихся в воде веществ
- Влияние гидрологических процессов на природные условия
- Водные ресурсы земного шара, частей света и россии
- Та блица 3.6. Средние многолетние (1930—2000) водные ресурсы России*
- Глава 4 гидрология ледников
- Происхождение ледников и их распространение на земном шаре
- Типы ледников
- Образование и строение ледников
- Питание и абляция ледников, баланс льда и воды в ледниках
- Режим и движение ледников
- Роль ледников в питании и режиме рек. Практическое значение горных ледников
- Глава 5 гидрология подземных вод
- Происхождение подземных вод и их распространение на земном шаре
- Физические и водные свойства грунтов. Виды воды в порах грунтов
- Физические свойства грунтов
- Виды воды в порах грунта
- 5.2.3. Водные свойства грунтов
- Классификация подземных вод. Типы подземных вод по характеру залегания
- Воды зоны аэрации. Почвенные воды, верховодка, капиллярная зона
- Воды зоны насыщения. Грунтовые воды
- 5.3.5. Другие типы подземных вод
- Движение подземных вод
- Водный баланс и режим подземных вод
- Водный баланс подземных вод
- 5.5.2. Водный режим зоны аэрации
- Режим грунтовых вод
- Провинции: а — кратковременного питания, б— сезонного питания, в — круглогодичного питания (I—XII — месяцы)
- Взаимодействие поверхностных и подземных вод. Роль подземных вод в питании рек.
- Практическое значение и охрана подземных вод
- Глава 6 гидрология рек
- Реки и их распространение на земном шаре
- Водосбор и бассейн реки
- По линии а — б:
- Сток; 8 — русла рек
- Морфометрические характеристики бассейна реки
- Физико-географические и геологические характеристики бассейна реки
- Река и речная сеть
- Долина и русло реки
- Продольный профиль реки
- Плес; Пр — перекат
- Питание рек
- Виды питания рек
- Классификация рек по видам питания
- Расходование воды в бассейне реки
- Водный баланс бассейна реки
- Уравнение водного баланса бассейна реки
- Структура водного баланса бассейна реки
- Водный режим рек
- Виды колебаний водности рек
- 1 Числитель — данные за 1942—1955 гг., знаменатель — за 1956—1969 гг. 2 Данные за 1941— 1967 гг. 3 Данные за 1968—1987 гг. Прочерк означает отсутствие данных.
- Фазы водного режима рек. Половодье, паводки, межень
- Расчленение гидрографа по видам питания
- Классификация рек по водному режиму
- Типы: а — дальневосточный (р. Витим, г. Бодайбо, 1937 г.); 6 — тянь-шанский (р. Терек, с. Казбеги,
- 1937 Г.) (I—XII — месяцы)
- Речной сток
- Составляющие речного стока
- Факторы и количественные характеристики стока воды
- Пространственное распределение стока воды на территории снг
- Движение воды в реках
- Распределение скоростей течения в речном потоке
- Динамика речного потока
- Закономерности трансформации паводков
- Движение речных наносов
- Происхождение, характеристики и классификация речных наносов
- Частиц, мм 1,0 0,5 0,2 0,1 0,05 0,01 0,005 0,001
- Движение влекомых наносов
- Движение взвешенных наносов
- Сток наносов
- И связи между ними (б):
- Русловые процессы
- Физические причины и типизация русловых процессов
- Микроформы речного русла и их изменения
- Мезоформы речного русла и их изменения
- Макроформы речного русла и их изменения
- Деформации продольного профиля русла
- Устойчивость речного русла
- Термический и ледовый режим рек 6.12.1. Тепловой баланс участка реки
- Ледовые явления
- Основные черты гидрохимического и гидробиологического режима рек
- Гидрохимический режим рек
- Гидробиологические особенности рек
- Устья рек
- Факторы формирования, классификация и районирование устьев рек
- С блокирующей косой
- Особенности гидрологического режима устьевого участка реки
- Особенности гидрологического режима устьевого взморья
- Практическое значение рек. Влияние хозяйственной деятельности на режим рек
- Практическое значение рек и типизация хозяйственных мероприятий, влияющих на речной сток
- Влияние на речной сток хозяйственной деятельности на поверхности речных бассейнов
- Влияние на речной сток хозяйственной деятельности, связанной с непосредственным использованием речных вод
- 2 4 6 8 1012141618202224 Часы
- 6.15.4. Гидролого-экологические последствия антропогенных изменений стока рек
- Глава 7 гидрология озер
- 7.1. Озера и их распространение на земном шаре
- Профиль берега
- Водный баланс озер
- Уравнение водного баланса озера
- Структура водного баланса озера
- Водообмен в озере
- Колебания уровня воды в озерах
- Термический и ледовый режим озер
- Тепловой баланс озер
- Термическая классификация озер
- Термический режим озер в условиях умеренного климата
- Ледовые явления на озерах
- Основные особенности гидрохимических и гидробиологических условий. Донные отложения озер
- Гидрохимические характеристики озер
- Гидробиологические характеристики озер
- Наносы и донные отложения в озерах
- Водные массы озер
- Изменения гидрологического режима каспийского и аральского морей
- Проблемы, связанные с судьбой Каспийского и Аральского морей
- Каспийское море
- Влияние озер на речной сток. Хозяйственное использование озер
- Глава 8 гидрология водохранилищ
- Назначение водохранилищ и их размещение на земном шаре
- Типы водохранилищ
- Основные характеристики водохранилищ
- Водный режим водохранилищ
- Термический и ледовый режим водохранилищ
- Гидрохимический и гидробиологический режим водохранилищ
- Заиление водохранилищ и переформирование их берегов
- Водные массы водохранилищ
- Влияние водохранилищ на речной сток и окружающую природную среду
- Глава 9 гидрология болот
- Происхождение болот и их распространение на земном шаре
- Типы болот
- Строение, морфология и гидрография торфяных болот
- Развитие торфяного болота
- Фазы: 7 —низинная; 2—переходная; 3— 6— верховая;
- Водный баланс и гидрологический режим болот
- Влияние болот и их осушения на речной сток. Практическое значение болот
- Глава 10 гидрология океанов и морей
- Мировой океан и его части. Классификация морей
- Происхождение, строение и рельеф дна мирового океана. Донные отложения
- Происхождение ложа океана
- Рельеф дна Мирового океана
- Донные отложения
- Водный баланс мирового океана
- Солевой состав и соленость вод океана
- Солевой состав вод океана
- Распределение солености в Мировом океане
- Термический режим мирового океана
- Тепловой баланс Мирового океана
- Распределение температуры в Мировом океане
- 2,7 3,8 5,5 4,4 2,9 2,2 Южное полушарие
- Факторы, определяющие плотность морской воды
- Распределение плотности в Мировом океане
- Морские льды
- Ледообразование в море
- Физические свойства морского льда
- Движение льдов
- 10.7.4. Ледовитость океанов и морей
- Оптические свойства морской воды
- Акустические свойства морской воды
- Волны зыби
- Деформация волн у берега
- Волны цунами
- Внутренние волны
- Приливы
- Основные элементы приливов
- Приливообразующая сила
- Статическая и динамическая теории приливов. Строение приливной волны и приливные течения
- Разложение уравнения приливной волны. Гармонические постоянные. Таблицы приливов
- Приливы в ограниченном водоеме. Сейши
- Морские течения
- 10.12.1. Силы, формирующие течения. Классификация морских течений
- Теория ветровых течений
- Течение
- Плотностные течения
- Циркуляция вод в Мировом океане
- Уровень океанов и морей
- Кратковременные колебания уровня
- Сезонные колебания уровня
- Водные массы океана
- Основы учения о водных массах
- Основы г, s-анализа водных масс
- Водные массы Мирового океана
- Взаимодействие океана и атмосферы. Океан и климат
- Ресурсы мирового океана и его экологическое состояние
- Ресурсы Мирового океана
- Литература Основная
- Богословский б. Б. И др. Общая гидрология,— ji.: Гидрометеоиздат, 1984,—356 с.
- VI Всероссийский гидрологический съезд. 28 сентября — 1 октября 2004 г. Санкт- Петербург. Тезисы докладов. СПб.: Гидрометеоиздат, 2004.
- Типы рек