Некоторые другие физические свойства воды
Молекулярная вязкость воды (внутреннее трение). По сравнению с вязкостью других жидкостей вязкость воды невелика, что также относится к специфическим свойствам воды. Вязкость жидкости характеризуется кинематическим коэффициентом вязкости v, м2/с, и динамическим коэффициентом вязкости ц, кг/(м*с).
Между этими коэффициентами существует связь:
H = pv. (1.15)
Вязкость воды уменьшается с повышением ее температуры. Поэтому в холодное время года вязкость воды несколько больше, чем в теплое. Ниже приводятся значения кинематического коэффициента вязкости химически чистой воды при нормальном атмосферном давлении:
Т,° С 0 5 10 15 20 30 40 50
V, Ю^м2/с 1,78 1,52 1,31 1,14 1,01 0,81 0,66 0,55
Благодаря малой вязкости вода текуча, и даже небольшие по величине внешние силы приводят ее в движение. Вода способна
переносить большие количества растворенных и взвешенных веществ, а также теплоты.
Увеличение минерализации несколько повышает вязкость воды: увеличение солености на 10 %о приводит к возрастанию коэффициента вязкости приблизительно на 1,5%. С ростом давления вязкость воды уменьшается, а не повышается, как у других жидкостей.
Лед — твердое тело, обладающее пластичностью, которая позволяет ему в некоторых условиях, например в ледниках, двигаться. Считают, что кинематический коэффициент вязкости льда лежит в пределах 108—10й м2/с.
Поверхностное натяжение и смачивание. У воды по сравнению с другими жидкостями очень высокое поверхностное натяжение. С ростом температуры поверхностное натяжение воды немного уменьшается. Коэффициент поверхностного натяжения воды изменяется от 75,6 • 10~3 Н/м при 0 °С до 60,8 • 10~3 Н/м при 90 °С. Лишь ртуть в жидком состоянии обладает более высоким поверхностным натяжением.
Необычайно высокое поверхностное натяжение воды способствует размыву почв и грунтов: дождевые капли благодаря поверхностному натяжению упруги и обладают относительно большой кинетической энергией и разрушительной силой.
Вода как хорошо смачивающая жидкость обладает, кроме того, способностью подниматься в порах и капиллярах почвы и растений.
Поверхностное натяжение играет роль и в процессах волнообразования на поверхности воды, обмена теплотой и веществом между водой и атмосферой. На величину поверхностного натяжения нередко сильно влияет загрязнение вод, например нефтяная пленка.
Оптические свойства воды. Свет от поверхности воды частично отражается, на границе раздела воздух — вода преломляется, а в толще воды рассеивается и поглощается и в результате этого ослабляется.
Отношение энергии отраженного от поверхности раздела воздух—вода света к энергии падающего света (альбедо) зависит от освещенности (ясно или облачно), состояния водной поверхности (гладкая или с волнами) и составляет 4—11 % от величины падающего света. Альбедо уменьшается с увеличением волнения и облачности.
Коэффициент преломления света (отношение угла падения светового луча к углу преломления) на границе раздела воздух — вода равен в среднем 1,33—1,34. Он несколько уменьшается с повышением температуры и возрастает с увеличением солености воды.
Наиболее важны закономерности распространения света в воде. Вода пропускает видимую часть электромагнитного спектра с длинами волн от 0,38 до 0,77 мкм лучше, чем более коротко- и длинноволновую части спектра.
Свет распространяется в воде на небольшие расстояния. Интенсивность света быстро затухает в воде по экспоненциальному закону:
1= I0e'(lc+m)/h, (1.16)
где / и /0 — интенсивность света соответственно на глубине h и на поверхности; к — коэффициент рассеяния света; т — коэффициент поглощения света; к + т — коэффициент ослабления света; е — основание системы натуральных логарифмов.
В чистой воде на глубине 1 м интенсивность света составляет лишь 90 % интенсивности света на поверхности, на глубине 2 м — 81 %, на глубине Зм — 73%, а на глубине 100 м сохраняется лишь около 1 % интенсивности света на поверхности.
Главная роль в ослаблении света в воде принадлежит поглощению. Доля рассеяния имеет максимум при длинах волн 0,42— 0,44 мкм (16 % в чистой пресной и 21 % в чистой морской воде) и быстро уменьшается с уменьшением и увеличением длины волны. Наличие растворенных и особенно взвешенных веществ резко увеличивает коэффициенты поглощения и рассеяния света в воде. Наибольшее проникновение света в воду и минимум коэффициента ослабления сдвигаются в сторону больших длин волн. При этом изменяется и цвет воды — от синего к зеленому и желтовато-бурому.
Солнечный свет, таким образом, может проникать в водоемы лишь на небольшую глубину (несколько десятков метров); именно здесь и могут протекать процессы фотосинтеза.
Акустические свойства воды. Вода хорошо проводит звук. В толще воды звук может при некоторых условиях распространяться на огромные расстояния и с большой скоростью.
Скорость распространения звука в воде равна 1400—1600 м/с, т. е. в 4—5 раз больше скорости распространения звука в воздухе. Скорость звука в воде увеличивается с повышением температуры воды (приблизительно на 3—3,5 м/с на 1 °С), с увеличением солености (приблизительно на 1—1,3 м/с на 1 %о) и с ростом давления. Последнее означает, что с ростом глубины при прочих равных условиях скорость звука возрастает (приблизительно на 1,5—1,8 м/с на 100 м глубины).
Электропроводность воды. Химически чистая вода — плохой проводник электричества. Удельная электропроводность такой воды при 18 °С равна 3,8 • 106 (Ом • м)1. Электопроводность льда примерно в 10 раз меньше, чем у жидкой воды. Электропроводность воды немного увеличивается с повышением температуры и сильно возрастает с увеличением минерализации. У морской воды электропроводность значительно больше (до 4—6 (Ом • м)1), чем у речной. Электропроводность воды несколько возрастает с ростом давления, поэтому на больших глубинах в океане (более 10 км) электропроводность воды приблизительно на 12 % больше, чем в поверхностном слое.
№ Физическая Ее «аномалия» Значение для п/п характеристика воды водных объектов на Земле природы Земли в целом 1 Температура плавления (замерзания), 0 °С Очень высока Вода может существовать в твердом виде Существование ледников и снежного покрова 2 Температура кипения, 100 °С Очень высока Вода может существовать в жидком виде Существование водоемов и водотоков — океанов, морей, рек, озер 3 Температура наибольшей плотности, 4 °С Наступает не в момент замерзания, а при более высокой температуре При охлаждении водоема вода прекращает опускаться при достижении температуры наибольшей плотности. Водная толща не замерзает Сохранение жизни в водоемах зимой 4 Плотность льда, 917 кг/м3 Плотность льда меньше, чем жидкой воды Лед всплывает, теплоизолирует водоем, замедляет его охлаждение То же 5 Удельная теплота плавления (замерзания), 333 • 103 Дж/кг Очень велика При плавлении льда требуется большая затрата теплоты; при замерзании это же количество теплоты выделяется Регулирование тепловых процессов 6 Удельная теплота испарения (конденсации), 2,5 • 106 Дж/кг при 0 °С, 2,26 • 106 Дж/кг при 100 °С Очень велика При испарении воды требуется большая затрата теплоты; при конденсации водяного пара это же количество теплоты выделяется То же 7 Удельная теплоемкость, 4190 Дж./(кг * °С) при 15 °С Очень велика Вода медленно нагревается и медленно охлаждается То же 8 Коэффициент теплопроводности, 0,57 Вт/(м • °С) при 0 °С Очень мал То же То же 9 Коэффициент вязкости, 1,14-10 6 м2/с при 15 °С Мал Вода текуча и хорошо смачивает твердые тела Вода переносит наносы, растворенные вещества, теплоту, совершает механическую и эрозионную работу 10 Коэффициент поверхностного натяжения, 75,6 • 10-3 Н/м при 0 °С и 60,8 * 1 (Г3 Н/м при 90 °С Очень велик В порах грунта и растениях действуют капиллярные силы. Капли воды обладают ударной силой Питание растений. Дождевая эрозия Примечание. Численные значения характеристик приводятся для химически чистой воды.
На электропроводность воды влияет не только ее минерализация, но и химический состав. Оказалось, что воздействие на электропроводность разных ионов солей, растворенных в воде, различно, и поэтому изменение солевого состава воды влечет за собой изменение ее электропроводности даже при неизменной общей минерализации (солености). Например, ионы С Г и К+ влияют на электропроводность воды значительно сильнее, чем ионы SO4-, Са2+, Mg2+ и Na+.
Данные об основных физических аномалиях воды. 6 табл. 1.2 приведены сведения о 10 основных аномалиях воды и их влиянии на гидрологические процессы и природные условия на Земле в целом.
- Isbn 978-5-06-005815-4 © фгуп «Издательство «Высшая школа», 2007
- Предисловие
- Введение
- Вода в природе и жизни человека
- Водные объекты. Понятие о гидросфере
- Гидрологический режим и гидрологические процессы
- Науки о природных водах
- Методы гидрологических исследований
- Использование природных вод и практическое значение гидрологии
- 2. В числителе приведено полное, в знаменателе — безвозвратное водопотребление.
- Глава 1 химические и физические свойства природных вод
- Вода как вещество, ее молекулярная структура и изотопный состав
- 1.2. Химические свойства воды. Вода как растворитель
- 1.3. Физические свойства воды 1.3.1. Агрегатные состояния воды и фазовые переходы
- Плотность воды
- Тепловые свойства воды
- Некоторые другие физические свойства воды
- Глава 2 физические основы гидрологических процессов
- Фундаментальные законы физики и их использование при изучении водных объектов
- Водный баланс
- Баланс содержащихся в воде веществ
- Тепловой баланс
- Основные закономерности движения природных вод
- Классификация видов движения воды
- Расход, энергия, работа и мощность водных потоков
- Силы, действующие в водных объектах
- Уравнение движения водного потока
- Вертикальная устойчивость вод
- Глава 3 круговорот воды в природе и водные ресурсы земли
- Вода на земном шаре
- Современные и ожидаемые изменения климата и гидросферы земли
- Круговорот теплоты на земном шаре и роль в нем природных вод
- Круговорот воды на земном шаре
- И водные ресурсы Земли», 1974)
- Вод в грунтах
- Круговорот содержащихся в воде веществ
- Влияние гидрологических процессов на природные условия
- Водные ресурсы земного шара, частей света и россии
- Та блица 3.6. Средние многолетние (1930—2000) водные ресурсы России*
- Глава 4 гидрология ледников
- Происхождение ледников и их распространение на земном шаре
- Типы ледников
- Образование и строение ледников
- Питание и абляция ледников, баланс льда и воды в ледниках
- Режим и движение ледников
- Роль ледников в питании и режиме рек. Практическое значение горных ледников
- Глава 5 гидрология подземных вод
- Происхождение подземных вод и их распространение на земном шаре
- Физические и водные свойства грунтов. Виды воды в порах грунтов
- Физические свойства грунтов
- Виды воды в порах грунта
- 5.2.3. Водные свойства грунтов
- Классификация подземных вод. Типы подземных вод по характеру залегания
- Воды зоны аэрации. Почвенные воды, верховодка, капиллярная зона
- Воды зоны насыщения. Грунтовые воды
- 5.3.5. Другие типы подземных вод
- Движение подземных вод
- Водный баланс и режим подземных вод
- Водный баланс подземных вод
- 5.5.2. Водный режим зоны аэрации
- Режим грунтовых вод
- Провинции: а — кратковременного питания, б— сезонного питания, в — круглогодичного питания (I—XII — месяцы)
- Взаимодействие поверхностных и подземных вод. Роль подземных вод в питании рек.
- Практическое значение и охрана подземных вод
- Глава 6 гидрология рек
- Реки и их распространение на земном шаре
- Водосбор и бассейн реки
- По линии а — б:
- Сток; 8 — русла рек
- Морфометрические характеристики бассейна реки
- Физико-географические и геологические характеристики бассейна реки
- Река и речная сеть
- Долина и русло реки
- Продольный профиль реки
- Плес; Пр — перекат
- Питание рек
- Виды питания рек
- Классификация рек по видам питания
- Расходование воды в бассейне реки
- Водный баланс бассейна реки
- Уравнение водного баланса бассейна реки
- Структура водного баланса бассейна реки
- Водный режим рек
- Виды колебаний водности рек
- 1 Числитель — данные за 1942—1955 гг., знаменатель — за 1956—1969 гг. 2 Данные за 1941— 1967 гг. 3 Данные за 1968—1987 гг. Прочерк означает отсутствие данных.
- Фазы водного режима рек. Половодье, паводки, межень
- Расчленение гидрографа по видам питания
- Классификация рек по водному режиму
- Типы: а — дальневосточный (р. Витим, г. Бодайбо, 1937 г.); 6 — тянь-шанский (р. Терек, с. Казбеги,
- 1937 Г.) (I—XII — месяцы)
- Речной сток
- Составляющие речного стока
- Факторы и количественные характеристики стока воды
- Пространственное распределение стока воды на территории снг
- Движение воды в реках
- Распределение скоростей течения в речном потоке
- Динамика речного потока
- Закономерности трансформации паводков
- Движение речных наносов
- Происхождение, характеристики и классификация речных наносов
- Частиц, мм 1,0 0,5 0,2 0,1 0,05 0,01 0,005 0,001
- Движение влекомых наносов
- Движение взвешенных наносов
- Сток наносов
- И связи между ними (б):
- Русловые процессы
- Физические причины и типизация русловых процессов
- Микроформы речного русла и их изменения
- Мезоформы речного русла и их изменения
- Макроформы речного русла и их изменения
- Деформации продольного профиля русла
- Устойчивость речного русла
- Термический и ледовый режим рек 6.12.1. Тепловой баланс участка реки
- Ледовые явления
- Основные черты гидрохимического и гидробиологического режима рек
- Гидрохимический режим рек
- Гидробиологические особенности рек
- Устья рек
- Факторы формирования, классификация и районирование устьев рек
- С блокирующей косой
- Особенности гидрологического режима устьевого участка реки
- Особенности гидрологического режима устьевого взморья
- Практическое значение рек. Влияние хозяйственной деятельности на режим рек
- Практическое значение рек и типизация хозяйственных мероприятий, влияющих на речной сток
- Влияние на речной сток хозяйственной деятельности на поверхности речных бассейнов
- Влияние на речной сток хозяйственной деятельности, связанной с непосредственным использованием речных вод
- 2 4 6 8 1012141618202224 Часы
- 6.15.4. Гидролого-экологические последствия антропогенных изменений стока рек
- Глава 7 гидрология озер
- 7.1. Озера и их распространение на земном шаре
- Профиль берега
- Водный баланс озер
- Уравнение водного баланса озера
- Структура водного баланса озера
- Водообмен в озере
- Колебания уровня воды в озерах
- Термический и ледовый режим озер
- Тепловой баланс озер
- Термическая классификация озер
- Термический режим озер в условиях умеренного климата
- Ледовые явления на озерах
- Основные особенности гидрохимических и гидробиологических условий. Донные отложения озер
- Гидрохимические характеристики озер
- Гидробиологические характеристики озер
- Наносы и донные отложения в озерах
- Водные массы озер
- Изменения гидрологического режима каспийского и аральского морей
- Проблемы, связанные с судьбой Каспийского и Аральского морей
- Каспийское море
- Влияние озер на речной сток. Хозяйственное использование озер
- Глава 8 гидрология водохранилищ
- Назначение водохранилищ и их размещение на земном шаре
- Типы водохранилищ
- Основные характеристики водохранилищ
- Водный режим водохранилищ
- Термический и ледовый режим водохранилищ
- Гидрохимический и гидробиологический режим водохранилищ
- Заиление водохранилищ и переформирование их берегов
- Водные массы водохранилищ
- Влияние водохранилищ на речной сток и окружающую природную среду
- Глава 9 гидрология болот
- Происхождение болот и их распространение на земном шаре
- Типы болот
- Строение, морфология и гидрография торфяных болот
- Развитие торфяного болота
- Фазы: 7 —низинная; 2—переходная; 3— 6— верховая;
- Водный баланс и гидрологический режим болот
- Влияние болот и их осушения на речной сток. Практическое значение болот
- Глава 10 гидрология океанов и морей
- Мировой океан и его части. Классификация морей
- Происхождение, строение и рельеф дна мирового океана. Донные отложения
- Происхождение ложа океана
- Рельеф дна Мирового океана
- Донные отложения
- Водный баланс мирового океана
- Солевой состав и соленость вод океана
- Солевой состав вод океана
- Распределение солености в Мировом океане
- Термический режим мирового океана
- Тепловой баланс Мирового океана
- Распределение температуры в Мировом океане
- 2,7 3,8 5,5 4,4 2,9 2,2 Южное полушарие
- Факторы, определяющие плотность морской воды
- Распределение плотности в Мировом океане
- Морские льды
- Ледообразование в море
- Физические свойства морского льда
- Движение льдов
- 10.7.4. Ледовитость океанов и морей
- Оптические свойства морской воды
- Акустические свойства морской воды
- Волны зыби
- Деформация волн у берега
- Волны цунами
- Внутренние волны
- Приливы
- Основные элементы приливов
- Приливообразующая сила
- Статическая и динамическая теории приливов. Строение приливной волны и приливные течения
- Разложение уравнения приливной волны. Гармонические постоянные. Таблицы приливов
- Приливы в ограниченном водоеме. Сейши
- Морские течения
- 10.12.1. Силы, формирующие течения. Классификация морских течений
- Теория ветровых течений
- Течение
- Плотностные течения
- Циркуляция вод в Мировом океане
- Уровень океанов и морей
- Кратковременные колебания уровня
- Сезонные колебания уровня
- Водные массы океана
- Основы учения о водных массах
- Основы г, s-анализа водных масс
- Водные массы Мирового океана
- Взаимодействие океана и атмосферы. Океан и климат
- Ресурсы мирового океана и его экологическое состояние
- Ресурсы Мирового океана
- Литература Основная
- Богословский б. Б. И др. Общая гидрология,— ji.: Гидрометеоиздат, 1984,—356 с.
- VI Всероссийский гидрологический съезд. 28 сентября — 1 октября 2004 г. Санкт- Петербург. Тезисы докладов. СПб.: Гидрометеоиздат, 2004.
- Типы рек